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1. Задачи математической статистики
Задачи математической статистики можно рассматривать как

в некотором смысле обратные к задачам теории вероятностей. В те-
ории вероятностей считается заданным вероятностное простран-
ство (или, например, распределения случайных величин, опреде-
лённых на этом пространстве). В рамках такой модели требуется
найти вероятность того или иного события. В отличие от теории
вероятностей в математической статистике известно, какие собы-
тия произошли, и на основании этих сведений следует высказаться
о вероятностном пространстве или некоторых его свойствах.

Например, найти вероятность получить k успехов в серии из
n испытаний по схеме Бернулли, если известна вероятность успе-
ха p при единичном испытании, – это задача теории вероятностей,
в которой ответ даётся формулой Бернулли. К математической ста-
тистике относится задача, в которой известно, что в результате
n испытаний получено k успехов, и требуется оценить вероятность
успеха в единичном испытании. Другим примером задачи мате-
матической статистики является поиск ответа на вопрос, проти-
воречит ли полученному результату эксперимента предположение
о том, что вероятность успеха в единичном испытании равна неко-
торой заданной величине p0.

1.1. Основные понятия и теоремы
теории случайных величин

Напомним базовые понятия и теоремы теории вероятностей,
связанные со случайными величинами.

Распределения случайных величин

Случайная величина (с.в.) принимает различные числовые зна-
чения случайным образом. Поведение с.в. ξ задаётся функцией рас-
пределения

F (x) def= P (ξ < x), x ∈ R.
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Функция распределения любой с.в. определена (т. е. имеет какое-
то конкретное значение) в каждой точке вещественной прямой, не
убывает от F (−∞) = 0 до F (∞) = 1 и непрерывна слева, другими
словами, F (x− 0) = F (x) для любого x ∈ R. При этом правое пре-
дельное значение F (x + 0) = P (ξ 6 x), тем самым скачок функции
распределения в точке x равен

F (x + 0) − F (x − 0) = F (x + 0) − F (x) = P (ξ = x),

и F ( · ) непрерывна в точке x, если и только если P (ξ = x) = 0.
Распределение с.в. ξ называется абсолютно непрерывным, если

существует функция p( · ) : R → R+, называемая плотностью веро-
ятности1), такая что для любого x ∈ R

dF (x) = F (x + dx) − F (x) = P (x 6 ξ < x + dx) = p(x) dx.

Тогда для подмножества X ⊂ R

P (ξ ∈ X) =
∫
X

p(x) dx.

Распределение с.в. ξ называется дискретным, если существует ко-
нечный (m < ∞) или счётный (m = ∞) набор чисел {bj}j=1,m,
такой что

P (ξ = bj) = pj > 0, j = 1, . . . , m,
m∑

j=1

pj = 1.

Эти равенства называют рядом или законом распределения дис-
кретной с.в. Для подмножества X ⊂ R мы можем записать оче-
видное равенство

P (ξ ∈ X) =
∑

j : bj∈X

pj .

Два указанных типа распределения не исчерпывают все возмож-
ные распределения, но в нашем курсе любая с.в. распределена либо
дискретно, либо абсолютно непрерывно.

1)Значение плотности вероятности может не существовать в одной или не-
скольких точках, с другой стороны, в этих точках плотность вероятности мож-
но доопределить, положив её равной любому конечному числу (например, по
непрерывности слева или справа). Мы будем считать, что любая плотность
вероятности определена на всей оси и кусочно непрерывна.
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Во многих случаях мы будем иметь дело с хорошо известны-
ми и изученными распределениями. Перечислим некоторые из них
и введём соответствующие обозначения.

• С.в. ξ распределена нормально (имеет нормальное распреде-
ление) с параметрами µ ∈ R и 0 < σ2 < ∞, и тогда мы пишем
ξ ∼ N(µ, σ2), если

p(x) =
1√

2πσ2
e−

1
2σ2 (x−µ)2 , −∞ < x < ∞. (1.1)

• С.в. ξ распределена экспоненциально (имеет экспоненциаль-
ное распределение) с параметром 0 < a < ∞, и мы пишем ξ ∼ E(a),
если

p(x) =

{
ae−ax, x > 0,

0, x < 0.
(1.2)

• С.в. ξ распределена равномерно (имеет равномерное распре-
деление) на отрезке [a, b], где −∞ < a < b < ∞, и мы пишем
ξ ∼ U[a, b], если

p(x) =


1

b − a
, x ∈ [a, b],

0, x /∈ [a, b].
(1.3)

• С.в. ξ имеет распределение Пуассона с параметром 0 < λ < ∞,
и мы пишем ξ ∼ P(λ), если

P (ξ = k) =
λk

k!
e−λ, k = 0, 1, . . . . (1.4)

• С.в. ξ имеет биномиальное распределение с параметрами n =
1, 2 . . . и 0 < p < 1, и мы пишем ξ ∼ B(n, p), если

P (ξ = k) = Ck
npkqn−k, k = 0, 1, . . . , n, q = 1 − p. (1.5)

В курсе математической статистики в основном рассматривают
многомерные с.в. ξ = (ξ1, . . . , ξn). Здесь n может принимать любое
конечное натуральное значение. Далее мы называем с.в. ξ1, . . . , ξn

составляющими многомерной с.в. ξ. В общем случае функция рас-
пределения n-мерной с.в. ξ определяется как

F (x) = P (ξ < x) def= P (ξ1 < x1, . . . , ξn < xn), x = (x1, . . . , xn) ∈ Rn.



1.1. ОСНОВЫ ТЕОРИИ СЛУЧАЙНЫХ ВЕЛИЧИН 7

Если для всех x ∈ Rn

dF (x) = P (x1 6 ξ < x1 + dx1, . . . , xn 6 ξ < xn + dxn) = p(x) dx,

где dx = dx1 . . . dxn, то функция p( · ) : Rn → R+ называется сов-
местной плотностью вероятности n-мерной с.в. ξ.

Мы будем иметь дело только с многомерными с.в., которые
имеют независимые составляющие. Это означает, что при любом
x = (x1, . . . , xn) ∈ R совместная функция распределения представ-
ляется как произведение одномерных функций распределения:

F (x) = Fξ1(x1) . . . Fξn(xn), (1.6)

где Fξk
( · ) – функция распределения с.в. ξk, k = 1, . . . , n. Если су-

ществует плотность вероятности независимых с.в. ξ, . . . , ξn, то для
неё справедливо аналогичное равенство:

p(x) = pξ1(x1) . . . pξn(xn), (1.7)

где pξk
( · ) – плотность вероятности с.в. ξk, k = 1, . . . , n. Кроме неза-

висимости, мы будем предполагать, что все ξ1, . . . , ξn одинаково
распределены, т. е. P (ξk < x) не зависит от k для любого x ∈ R.
Тогда согласно (1.6) для задания распределения n-мерной с.в. ξ
достаточно задать одномерное распределение.

Математическое ожидание с.в.
Математическое ожидание с.в. ξ – это взвешенное среднее её

значений, в котором вес каждого значения тем выше, чем выше ве-
роятность наблюдать это значение при измерении данной с.в. Если
с.в. ξ имеет абсолютно непрерывное распределение с плотностью
вероятности p( · ), то математическое ожидание равно

Mξ =
∫ +∞

−∞
xp(x) dx.

Если с.в. ξ имеет дискретное распределение, то математическое
ожидание равно

Mξ =
m∑

j=1

bjP (ξ = bj), где
m∑

j=1

P (ξ = bj) = 1.
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Математическое ожидание существует, только если интеграл/ряд
сходится абсолютно.

Если с.в. η задана как функция от с.в. ξ, т. е. η = g(ξ), то

Mη = Mg(ξ) =


∫ +∞

−∞
g(x) p(x) dx,

m∑
j=1

g(bj)P (ξ = bj),

где первая строчка соответствует абсолютно непрерывному, а вто-
рая – дискретному распределению с.в. ξ. Эти формулы справедли-
вы и в случае n-мерной с.в. ξ: если η = g(ξ) и g( · ) : Rn → R то,
чтобы найти Mη, нужно вычислить аналогично написанному выше
n-мерный интеграл или n-мерную сумму.

Число Mξk называется начальным моментом, M(ξ − Mξ)k –
центральным моментом k-го порядка; центральный момент 2-го по-
рядка называется дисперсией с.в. ξ,

Dξ = M(ξ − Mξ)2,

а число
cov(ξ1, ξ2) = M

[
(ξ1 − Mξ1)(ξ2 − Mξ2)

]
– коэффициентом ковариации (ковариацией) случайных величин
ξ1, ξ2. При этом Dξ = cov(ξ, ξ).

Математическое ожидание линейно: для любых случайных ве-
личин ξ1, . . . , ξn и любых вещественных постоянных a1, . . . , an и c

M(a1ξ1 + · · · + anξn + c) = a1Mξ1 + · · · + anMξn + c.

Из линейности вытекает, что

D(aξ + b) = a2Dξ, Dξ = Mξ2 − (Mξ)2,
cov(ξ1, ξ2) = M(ξ1ξ2) − Mξ1Mξ2.

Если случайные величины ξ1, . . . , ξn независимы, то

M(ξ1 . . . ξn) = Mξ1 · . . . · Mξn.

Отсюда следует, что если с.в. ξ1, ξ2 независимы, то cov(ξ1, ξ2) = 0;
обратное утверждение, вообще говоря, неверно.
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Если P (ξ > 0) = 1, то Mξ > 0. Вследствие линейности, если
P (ξ1 > ξ2) = 1, то Mξ1 > Mξ2. Справедливы следующие неравен-
ства:

Mξ2 > (Mξ)2, (1.8)

неравенство Коши–Буняковского∣∣ cov(ξ1, ξ2)
∣∣ 6

√
Dξ1Dξ2 (1.9)

и неравенство Чебышёва: для любого ε > 0

P
(
|ξ − Mξ| > ε

)
6 Dξ

ε2
. (1.10)

Из неравенства Чебышёва следует, что если Dξ = 0, то ξ = Mξ
с вероятностью единица.

Сходимости последовательностей с.в.
В нашем курсе мы встретимся с тремя типами сходимости по-

следовательностей с.в.
Последовательность с.в. {ξn}n=1,∞ сходится к с.в. ξ по вероят-

ности, и мы пишем ξn
P−→

n→∞
ξ, если для любого ε > 0

lim
n→∞

P
(
|ξn − ξ| > ε) = 0 (1.11)

или, что эквивалентно, lim
n→∞

P
(
|ξn − ξ| < ε) = 1.

Последовательность {ξn}n=1,∞ сходится к с.в. ξ по распределе-

нию, и мы пишем ξn
d−→

n→∞
ξ, если имеет место поточечная сходи-

мость функций распределения Fξn( · ) с.в. ξn, n = 1, 2, . . . , к функ-
ции распределения Fξ( · ) с.в. ξ:

lim
n→∞

Fξn(x) = Fξ(x) (1.12)

в каждой точке x непрерывности предельной функции Fξ( · ).
Последовательность {ξn}n=1,∞ сходится к с.в. ξ с вероятностью

единица (иначе говоря, почти наверное), и мы пишем ξn
п.н.−→

n→∞
ξ, если

P ( lim
n→∞

ξn = ξ) = 1.
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Закон больших чисел в форме Чебышёва. Если ξ1, ξ2, . . .
независимы и одинаково распределены, Mξk = µ, Dξk = σ2 для
k = 1, 2, . . . , то

1
n

n∑
k=1

ξk −→
n→∞

µ

и по вероятности, и с вероятностью единица.
Закон больших чисел в форме Бернулли. Если βn – чис-

ло успехов в n испытаниях Бернулли с вероятностью успеха p, т. е.
βn ∼ B(n, p), то частота успеха βn/n сходится к вероятности успе-
ха p при n → ∞ (по вероятности или почти наверное).

Центральная предельная теорема. Если {ξn}n=1,∞ – после-
довательность независимых одинаково распределённых случайных
величин, Mξk = µ, Dξk = σ2 для k = 1, 2, . . . , то

ηn =

∑n
j=1(ξj − µ)

σ
√

n

d→ ν∗,

где случайная величина ν∗ имеет стандартное нормальное распре-
деление N(0, 1), причём сходимость функций распределения Fηn( · )
с.в. ηn, n = 1, 2, . . . , к функции распределения Φ( · ) с.в. ν∗ равно-
мерная по x на любом конечном интервале вещественной оси. Здесь
и далее

Φ(x) def=
1
2π

∫ x

−∞
e−t2/2 dt, x ∈ R. (1.13)

Эта функция называется интегралом вероятности и по сути явля-
ется функцией распределения с.в. ν∗ ∼ N(0, 1).

Интегральная теорема Муавра–Лапласа. Пусть βn – чис-
ло успехов в серии n независимых испытаний Бернулли с фикси-
рованной вероятностью успеха p. Положим xk,n = k−np√

npq . Тогда при
условии, что |xk,n| < C при всех значениях k для некоторого C ∈ R,∣∣P (βn < k) − Φ(xk,n)

∣∣ → 0, n → ∞. (1.14)

В курсе математической статистки нам потребуются два утвер-
ждения, которые можно найти не во всех учебниках по теории ве-
роятностей, поэтому здесь мы приведём их доказательство полно-
стью.
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Предложение 1. Пусть функция f( · ) : R → R непрерывна в точ-
ке a ∈ R своей области определения. Пусть для последователь-
ности с.в. {ξn}n=1,∞ имеет место сходимость ξn

P−→
n→∞

a. Тогда

f(ξn) P−→
n→∞

f(a).

Доказательство. Из непрерывности функции f( · ) в точке a сле-
дует, что для любого ε > 0 найдётся δ(ε) > 0, такое что если
|x − a| < δ(ε), то |f(x) − f(a)| < ε.

Выберем и зафиксируем произвольное ε > 0, найдём для него
δ(ε) > 0 и рассмотрим последовательность вероятностей

Pn(ε) = P (|f(ξn) − f(a)| < ε), n = 1, 2, . . . .

Имеем

Pn(ε) = P (|f(ξn) − f(a)| < ε, |ξn − a| < δ(ε)) +
+ P (|f(ξn) − f(a)| < ε, |ξn − a| > δ(ε)) =

= P1,n(ε) + P2,n(ε). (1.15)

Событие |ξn − a| < δ(ε) влечет событие |f(ξn) − f(a)| < ε, поэтому

P1,n(ε) = P (|f(ξn) − f(a)| < ε, |ξn − a| < δ(ε)) = P (|ξn − a| < δ(ε)).

В силу того, что ξn
P−→ a при n → ∞, получаем

lim
n→∞

P1,n(ε) = lim
n→∞

P (|ξn − a| < δ(ε)) = 1.

Для второго слагаемого в (1.15) имеем

P2,n(ε) = P (|f(ξn) − f(a)| < ε, |ξn − a| > δ(ε)) 6 P (|ξn − a| > δ(ε)).

Опять же как следствие ξn
P−→ a получаем P (|ξn − a| > δ(ε)) → 0

при n → ∞, поэтому
lim

n→∞
P1,n(ε) = 0.

Отсюда Pn(ε) = P1,n(ε)+P2,n(ε) → 1 при n → ∞, что и доказывает
сходимость f(ξn) P−→ f(a).
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Предложение 2. Пусть для последовательностей с.в. {ξn}n=1,∞

и {ηn}n=1,∞ имеют место сходимости ξn
P−→

n→∞
1 и ηn

d−→
n→∞

η. Тогда

ξnηn
d−→

n→∞
η.

Доказательство. Обозначим как Fξnηn( ·), Fη( ·) функции распре-
деления соответствующих с.в. Покажем, что Fξnηn(x) → Fη(x) при
n → ∞ в любой точке x ∈ R непрерывности функции Fη( · ).

Выберем и зафиксируем число ε ∈ (0, 1). Тогда мы можем, как
и в предыдущем утверждении, разбить искомую вероятность на
два слагаемых:

Fξnηn(x) = P (ξnηn < x) =
= P (ξnηn < x, |ξn − 1| > ε) + P (ξnηn < x, |ξn − 1| < ε) =
= P1,n(x, ε) + P2,n(x, ε). (1.16)

Оценим каждое из слагаемых в правой части (1.16). Для первого
слагаемого имеем

P1,n(x, ε) = P (ξnηn < x, |ξn − 1| > ε) 6 P (|ξn − 1| > ε) → 0 (1.17)

при n → ∞ в силу сходимости ξn
P−→ 1.

Теперь оценим второе слагаемое в правой части (1.16). Сначала
будем считать, что x > 0. Рассмотрим систему неравенств ξnηn < x,
|ξn − 1| < ε как условия, задающие область на плоскости (ξn, ηn).
Легко видеть, что для 0 < ε < 1 мы имеем следствия{

ξnηn < x,

1 − ε < ξn < 1 + ε
=⇒ ηn <

x

1 − ε
,ηn <

x

1 + ε
,

1 − ε < ξn < 1 + ε
=⇒

{
ξnηn < x,

1 − ε < ξn < 1 + ε.

(1.18)

Другими словами, события, стоящие слева от знака следствия, вле-
кут события, стоящие справа. Отсюда следуют оценки для вероят-
ности P2,n(x, ε) = P (ξnηn < x, |ξn − 1| < ε):

P2,n(x, ε) 6 P

(
ηn <

x

1 − ε

)
= Fηn

(
x

1 − ε

)
, (1.19)

P2,n(x, ε) > P

(
ηn <

x

1 + ε
, |ξn − 1| < ε

)
. (1.20)
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Продолжим неравенство (1.20), воспользовавшись следующим
простым неравенством: для любых событий A и B

P (A ∩ B) > P (A) − P (B ).

Оно следует из того, что P (A) = P (A ∩ B) + P (A ∩B ), поэтому

P (A ∩ B) = P (A) − P (A ∩B ) > P (A) − P (B ).

Положив A = {(1+ε)ηn < x}, B = {|ξn−1| < ε}, получим из (1.20)

P2,n(x, ε) > P

(
ηn <

x

1 + ε

)
− P (|ξn − 1| > ε) =

= Fηn

(
x

1 + ε

)
− P (|ξn − 1| > ε).

Итак, для любого ε ∈ (0, 1) и для любой точки x > 0 непрерывности
функции Fη( · )

Fηn

(
x

1 + ε

)
− P (|ξn − 1| > ε) 6 P2,n(x, ε) 6 Fηn

(
x

1 − ε

)
.

Для x < 0, как нетрудно показать, справедливы аналогичные
оценки, только в обоих неравенствах для ηn в (1.18), а именно в

ηn <
x

1 − ε
, ηn <

x

1 + ε
,

нужно поменять знак при ε на противоположный.
Если, наконец, x = 0 является точкой непрерывности функ-

ции Fη( · ), то для ε ∈ (0, 1)

P2,n(0, ε) = P (ξnηn < 0, 1 − ε < ξn < 1 + ε) = P (ηn < 0).

Таким образом, получаем общее неравенство

Fηn

(
x

1 ± ε

)
− P (|ξn − 1| > ε) 6 P2,n(x, ε) 6 Fηn

(
x

1 ∓ ε

)
, (1.21)

где верхний знак в ± и ∓ отвечает x > 0, а нижний отвечает x< 0.
Значение x = 0 можно подставить в любой вариант двойного нера-
венства, оно останется верным.
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Итак, для любого фиксированного ε ∈ (0, 1) и для любой точки
x ∈ R непрерывности функции Fη( · )

Fξnηn(x) = P1,n(x, ε) + P2,n(x, ε),

где P1,n(x, ε) → 0 при n → ∞, а P2,n(x, ε) подчиняется неравен-
ству (1.21). Перейдём к пределу n → ∞, учитывая, что ηn

d−→ η и
P (|ξn − 1| > ε) → 0. Последовательность {Fξnηn(x)}n=1,∞ может не
иметь предела, поэтому мы получаем

Fη

(
x

1 ± ε

)
6 lim inf

n→∞
Fξnηn(x) 6 lim sup

n→∞
Fξnηn(x) 6 Fη

(
x

1 ∓ ε

)
.

Теперь будем считать, что ε настолько мало, что Fη( · ) непрерывна
на отрезке [x − ε, x + ε], и устремим ε к нулю. Получим

Fη(x) 6 lim inf
n→∞

Fξnηn(x) 6 lim sup
n→∞

Fξnηn(x) 6 Fη(x),

следовательно, Fη(x) = lim
n→∞

Fξnηn(x). Предложение доказано.

1.2. Выборочные характеристики случайных величин
Исходными данными задачи математической статистики явля-

ются результаты измерений, представленные в виде упорядочен-
ного конечного набора числовых значений x = (x1, . . . , xn) ∈ Rn.
Эти данные называются выборкой объема n. Основное предполо-
жение математической статистики состоит в том, что для каждого
k = 1, . . . , n число xk есть одно из возможных значений с.в. ξk. С.в.
ξ1, . . . , ξn считаются независимыми и одинаково распределёнными.
Другими словами, мы рассматриваем n-мерную с.в. ξ = (ξ1, . . . , ξn)
с независимыми и одинаково распределёнными составляющими,
которая также называется выборкой (из этого распределения).

Сначала рассмотрим выборку ξ объёма n = 1 (одномерную
с.в.). Назовём реализацией этой с.в. любое число x ∈ R, такое что
p(x) 6= 0 для абсолютно непрерывного распределения (здесь p( · ) –
это плотность вероятности с.в. ξ) или P (ξ = x) 6= 0 для дискретного
распределения. Множество всех возможных для заданного распре-
деления реализаций мы будем обозначать как R. Вероятность того,
что результат наблюдения попадёт в множество R, равна единице:
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для абсолютно непрерывного и дискретного распределений соот-
ветственно ∫

R
p(x) dx = 1 и

∑
x∈R

P (ξ = x) = 1. (1.22)

Интеграл и сумма по x /∈ R, разумеется, равны нулю.
Для n-мерной выборки ξ = (ξ1, . . . , ξn) множество реализаций

лежит в Rn. Если каждая из с.в. ξk, k = 1, . . . , n, имеет плотность
вероятности p( · ), то

R = {x = (x1, . . . , xn) : p(xk) > 0 для всех k = 1, . . . , n};

если распределение каждой из с.в. ξk, k = 1, . . . , n, дискретно, то

R = {x = (x1, . . . , xn) : P (ξk = xk) > 0 для всех k = 1, . . . , n}.

В статистике множество R также называют генеральной сово-
купностью, и можно сказать, что именно из генеральной совокуп-
ности выбираются (отсюда термин выборка) любые результаты на-
блюдений.

Определение 1. Любая функция t(ξ) от выборки, являющаяся
с.в. и не содержащая неизвестных параметров, называется стати-
стикой. Как правило, рассматривают одномерные статистики, т. е.
t( · ) : Rn → R.

По выборке можно строить самые разнообразные статистики.
Рассмотрим наиболее часто встречающиеся. Всюду далее в этом
разделе ξ = (ξ1, . . . , ξn) – выборка объема n > 1.

Выборочные моменты
Выборочным средним называют статистику

ξ̄ =
1
n

n∑
k=1

ξk,

выборочным моментом k-го порядка – статистику

ξk =
1
n

n∑
i=1

ξk
i , k = 1, 2, . . . .
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Далее будем аналогично обозначать чертой сверху любую стати-
стику вида

t(ξ) =
1
n

n∑
k=1

t(ξk).

Выборочная дисперсия может быть определена по-разному, напри-
мер как

S2 = ξ2 − (ξ̄ )2 =
1
n

n∑
k=1

ξ2
k −

(
1
n

n∑
k=1

ξk

)2

,

но чаще всего рассматривают статистику (при n > 1)

σ̂2 =
1

n − 1

n∑
k=1

(ξk − ξ̄ )2.

Значение выборочных моментов в математической статистике со-
стоит в том, что при определенных условиях они сходятся к соот-
ветствующим моментам с.в. ξ в силу законов больших чисел.

Заметим, что выборочное среднее имеет свойства, идентичные
свойствам математического ожидания: как нетрудно показать,

at(ξ) + b = at(ξ) + b, b · t(ξ) = b · t(ξ)

для любых постоянных a, b ∈ R. Также можно показать (вычисле-
ния см. в примере 4 в разделе 2.2 следующей главы), что

n∑
k=1

(ξk − ξ̄ )2 =
n∑

k=1

ξ2
k − 1

n

n∑
k,j=1

ξkξj ,

откуда
(ξk − ξ̄ )2 = ξ2 − (ξ̄ )2;

сравните с M(ξ − Mξ)2 = Mξ2 − (Mξ)2.

Выборочное распределение
Для любого множества B ⊂ R зададим функцию IB( · ) как

IB( · ) : R → {0, 1}, IB(x) =

{
1, x ∈ B,

0, x /∈ B.
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Она называется индикатором или индикаторной функцией множе-
ства B. Число элементов выборки ξ1, . . . , ξn, принадлежащих мно-
жеству B, и частота попадания реализаций выборки в множество B
(которые, очевидно, являются с.в.) соответственно равны

n∑
k=1

IB(ξk),
1
n

n∑
k=1

IB(ξk)
def= P ∗

n(B). (1.23)

(Случайную) величину P ∗
n(B) естественно назвать эмпирической

вероятностью попасть в множество B. Положим pB = P (ξk ∈ B)
для теоретической вероятности попасть в множество B; она, ра-
зумеется, не зависит от k = 1, . . . , n. Связь между эмпирической
и теоретической вероятностями даётся следующим простым утвер-
ждением.

Предложение 3. С ростом объема выборки n → ∞ эмпирическая
вероятность P ∗

n(B) сходится по вероятности к pB.

Доказательство . Для всех k = 1, . . . , n введём с.в. χk = IB(ξk).
По условию с.в. ξ1, . . . , ξn независимы и одинаково распределены,
следовательно, с.в. χ1, . . . , χn тоже независимы и одинаково рас-
пределены,

P (χk = 1) = P (ξk ∈ B) = pB,

P (χk = 0) = P (ξk /∈ B) = qB = 1 − pB.

При этом Mχk = pB, Dχk = pBqB. Тогда согласно закону больших
чисел (или усиленному закону больших чисел)

lim
n→∞

P ∗
n(B) = lim

n→∞

1
n

∑
k=1

χk = pB,

где сходимость понимается как сходимость по вероятности (или
соответственно с вероятностью единица, т. е. почти наверное).

Более того, согласно центральной предельной теореме имеется
сходимость по распределению:

n∑
k=1

χk − pB√
npBqB

d−→
n→∞

ν∗ ∼ N(0, 1).
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Если вернуться к исходному обозначению из (1.23),

P ∗
n(B) =

1
n

n∑
k=1

IB(ξk) =
1
n

n∑
k=1

χk,

то
n∑

k=1

χk − pB√
npBqB

=
n

√
npBqB

(P ∗
n(B) − pB) =

√
n

pBqB

· (P ∗
n(B) − pB).

Центральная предельная теорема позволяет утверждать, что при
больших объёмах выборки n

1 = Dν∗ ≈ D

(√
n

pBqB

· (P ∗
n(B) − pB)

)
=

n

pBqB

DP ∗
n(B),

поэтому дисперсия выборочной вероятности

DP ∗
n(B) ≈ pBqB

n
.

Если в качестве множества B выбирать полупрямые (−∞, x)
для различных x ∈ R, то получим выборочную функцию распре-
деления с.в. ξ:

F ∗
ξ (x) =

1
n

∑
k : ξk<x

I(−∞,x)(ξk).

Вариационный ряд и порядковые статистики
Пусть дана выборка2) x = (x1, . . . , xn). Чтобы построить выбо-

рочную функцию распределения F ∗( · ), удобно расположить вы-
борочные значения в порядке неубывания. Обозначив члены пе-
реупорядоченной последовательности символами x(k), в которых
k = 1, . . . , n, получим так называемый вариационный ряд выборки

x(1) 6 x(2) 6 · · · 6 x(n);

каждый член этого ряда есть функция от выборочных значений
x1, . . . , xn. Аналогичное упорядочение (независимых и одинаково

2)Как мы отмечали в предыдущем разделе, выборка – это не только n с.в.,
но и n чисел.
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распределённых) с.в. ξ1, . . . , ξn для каждой реализации x1, . . . , xn

даёт набор из n с.в.

ξ(1) 6 ξ(2) 6 . . . 6 ξ(n),

который тоже называют вариационным рядом. Члены этого ря-
да называются порядковыми статистиками: на k-м месте стоит
k-я порядковая статистика ξ(k), случайная величина ξ(1) называет-
ся минимальной, а ξ(n) – максимальной порядковой статистикой.
Понятно, что каждая порядковая статистика является некоторой
функцией от всех с.в. ξ1, . . . , ξn.

Порядковая статистика, стоящая посередине вариационного ря-
да, называется выборочной медианой распределения: если n – не-
чётное число, то выборочная медиана – это ξ(k̄), где k̄ = n+1

2 . Таким
образом, половина порядковых статистик лежит левее медианы,
половина – правее. Можно показать, что медиана набора чисел –
это число, сумма расстояний от которого до всех чисел из набо-
ра минимальна. Для чётного n медиану чаще всего задают как
полусумму (ξ(n/2) + ξ(n/2+1))/2 двух стоящих в середине ряда по-
рядковых статистик.

Пример 1. Пусть в результате измерений получена выборка 1, 6,
7, 4, 5, 3, 4, 2, 5, 4, 5, 1, 5, 6, 6. Упорядочив этот набор, получим вариа-
ционный ряд 1, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 7. Выборочная функция
распределения тогда принимает вид

F ∗
ξ (x) =

1
n

max{j : ξ(j) < x}.

Это кусочно-постоянная функция, непрерывная слева,

F ∗(x) =



0, x 6 1,

2/15, 1 < x 6 2,

1/15, 2 < x 6 3,
...

1, x > 7.

Предложение 4. Для каждого k = 1, . . . , n функция распределе-
ния k-й порядковой статистики имеет вид

P (ξ(k) < x) =
n∑

j=k

Cj
nF j(x)(1 − F (x))n−j , (1.24)
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где F ( · ) – функция распределения с.в. ξ.

Доказательство . Рассмотрим сначала k = n. Понятно, что

max
j=1,...,n

ξj < x ⇐⇒ ξj < x для всех j = 1, . . . , n.

Отсюда получаем

P (ξ(n) < x) = P

( n⋂
j=1

{ξj < x}
)

=
n∏

j=1

P (ξj < x) =
n∏

j=1

F (x),

где мы воспользовались тем, что все выборочные элементы ξk неза-
висимы и имеют одну и ту же функцию распределения F ( · ). Таким
образом,

P (ξ(n) < x) = Fn(x),

что соответствует (1.24) при k = n. Функция распределения мак-
симальной порядковой статистики равна n-й степени функции рас-
пределения с.в. ξ.

Аналогично для k = 1 в силу того, что

min
k=1,...,n

ξk > x ⇐⇒ ξk > x для всех j = 1, . . . , n,

имеем

P (ξ(1) > x) = P

( n⋂
k=1

{ξk > x}
)

=
n∏

k=1

P (ξk > x) =

=
n∏

k=1

(1 − F (x)) = (1 − F (x))n.

Запишем бином Ньютона:

1 =
(
F (x) + 1 − F (x)

)n =
n∑

j=0

Cj
nF j(x)(1 − F (x))n−j =

= (1 − F (x))n +
n∑

j=1

Cj
nF j(x)(1 − F (x))n−j .
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С учётом этих равенств

P (ξ(1) < x) = 1 − P (ξ(1) > x) = 1 − (1 − F (x))n =

=
n∑

j=1

Cj
nF j(x)(1 − F (x))n−j ,

что соответствует (1.24) при k = 1.
Для вычисления функции распределения k-й порядковой ста-

тистики заметим, что событие {ξ(k) < x} эквивалентно тому, что k
или более выборочных значений из n были строго меньше x. Ве-
роятность этого события вычисляется с использованием формулы
Бернулли: нужно, чтобы в серии из n независимых испытаний было
получено не менее k успехов. Успехом мы считаем попадание вы-
борочного значения в интервал (−∞, x), вероятность успеха, оче-
видно, равна F (x). В результате имеем искомую формулу

P (ξ(k) < x) =
n∑

j=k

Cj
nF j(x)(1 − F (x))n−j .



2. Точечные оценки
параметров распределений

Предположим, что распределение выборки известно с точно-
стью до одного или нескольких неизвестных исследователю па-
раметров. Наша цель – по выборке высказаться (в той или иной
форме) о значениях этих параметров. Такие задачи называются
задачами параметрической статистики.

Обозначим неизвестные параметры как (θ1, . . . , θs) = θ ∈ Rs,
s > 1. Предполагается, что задано множество Θ всех возможных
значений параметра θ, и в нём существует единственное значение θ,
которое определяет распределение выборки (мы называем это зна-
чение истинным); исследователю оно неизвестно.

При этих условиях требуется построить решающее правило, ко-
торое по выборке ξ = (ξ1, . . . , ξn) делает вывод о значении θ ∈ Θ.
Этот вывод может быть сформулирован как:

1) некоторое значение θ̂ = θ̂(ξ1, . . . , ξn), в определённом смысле
близкое к истинному θ; в этом случае речь идет о точечном оцени-
вании параметра θ, которому посвящена настоящая глава;

2) множество Θ̂(ξ) ⊂ Rs с границами, определяющимися вы-
боркой, которое с заданной вероятностью накрывает (содержит)
истинное значение θ; в этом случае речь идет о задачах интерваль-
ного оценивания, которым посвящена глава 3;

3) ответ на вопрос о том, верно или неверно наше предполо-
жение о том или ином значении параметра θ; в этом случае речь
идет о задачах проверки статистических гипотез, которые будут
рассмотрены в следующей части нашего пособия.

Окончательный ответ на поставленную задачу получается под-
становкой вместо ξ1, . . . , ξn набора реализаций x1, . . . , xn, получен-
ных в эксперименте.

22
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2.1. Функция правдоподобия
Введём следующее важное понятие. Пусть распределение одно-

мерной с.в. ξ зависит от параметра θ ∈ Θ ⊂ Rs и либо абсолютно
непрерывно (с плотностью вероятности p(x; θ), x ∈ R), либо дис-
кретно.

Определение 1. Функцией правдоподобия одномерной с.в. ξ на-
зывается функция L( · ) : R × Θ → R+, заданная как

L(x, θ) =

{
p(x; θ) для абсолютно непрерывного распределения,

Pθ(ξ = x) для дискретного распределения,

где x ∈ R, θ ∈ Θ.

В этом определении и далее нижний индекс в Pθ указывает на
зависимость вероятностей тех или событий от θ.

Введение функции правдоподобия связано с тем, что в задачах
математической статистики более важна зависимость распределе-
ния от параметра, чем от своей «естественной» переменной, т. е.
поведение L( · ) как функции от θ при фиксированном x. Теперь
мы можем записать вероятность того, что с.в. ξ попадёт в множе-
ство X ⊂ Rn, как

Pθ(ξ ∈ X) =
∫
X

L(x, θ) dx или Pθ(ξ ∈ X) =
∑
x∈X

L(x, θ) (2.1)

для соответственно абсолютно непрерывного или дискретного рас-
пределения.

Далее примем следующее соглашение: в наших теоретических
выкладках для краткости мы будем использовать только первое ра-
венство в (2.1) для абсолютно непрерывного распределения, помня,
что в конкретных вычислениях для дискретного распределения ин-
теграл необходимо заменить суммой, а плотность – вероятностью.
С учётом этого соглашения для абсолютно непрерывного распре-
деления

L(x, θ) dx = Pθ(x 6 ξ < x + dx), (2.2)

и значение L(x, θ) тем больше, чем больше вероятность того, что
с.в. ξ, имеющая распределение с параметром θ, примет значение x
(точнее, окажется в бесконечно малой окрестности точки x ∈ R).
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Введённое выше множество R реализаций с.в. ξ может зависеть
от θ ∈ Θ,

Rθ = {x ∈ R : L(x, θ) 6= 0},

и для любого θ ∈ Θ

Pθ(ξ ∈ Rθ) =
∫
Rθ

L(x, θ) dx = 1, Pθ(ξ /∈ Rθ) =
∫

x : L(x,θ)=0

L(x, θ) dx = 0.

Посмотрим, как выглядят функция правдоподобия и множе-
ство реализаций для известных одномерных распределений. Всюду
далее указаны только ненулевые значения функции правдоподобия
(т. е. значения при x ∈ Rθ, θ ∈ Θ). При прочих значениях обоих
своих аргументов (вне множества Rθ ×Θ) функция правдоподобия
равна нулю. В качестве множества Θ выбрано самое широкое для
данного распределения, т. е. ограниченное только условием суще-
ствования данного распределения.

• Нормальное распределение N(µ, σ2):

L(x, θ) =
1√

2πσ2
e−

1
2σ2 (x−µ)2 , θ = (µ, σ2),

Rθ = R, Θ =
{
−∞ < µ < ∞, 0 < σ2 < ∞

}
.

• Экспоненциальное (показательное) распределение E(a):

L(x, θ) = ae−ax, θ = a,

Rθ = R+, Θ =
{
0 < a < ∞

}
.

• Равномерное распределение U[a, b] (на отрезке [a, b]):

L(x, θ) =
1

b − a
, θ = (a, b),

Rθ = [a, b], Θ =
{
−∞ < a < b < ∞

}
.

• Распределение Пуассона P(λ):

L(k, θ) =
λk

k!
e−λ, θ = λ,

Rθ =
{
0, 1, 2, . . .

}
, Θ =

{
0 < λ < ∞

}
.
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• Биномиальное распределение B(m, p):

L(k, θ) = Ck
mpkqm−k, θ = (m, p),

Rθ =
{
0, 1, 2, . . . m

}
, Θ =

{
m = 1, 2 . . . , p ∈ (0, 1)

}
.

Заметим, что, кроме равномерного и биномиального распреде-
лений, для всех остальных распределений множество реализаций
не зависит от θ ∈ Θ, в таких случаях мы пишем Rθ = R.

Перейдём к функции правдоподобия выборки объёма n > 1.
Она выводится из условия, что составляющие выборки независимы
и одинаково распределены, и является функцией из Rn × Θ в R+.
Как получить конкретные выражения, легко понять из следующих
примеров. Во всех примерах множество Θ выбрано так же, как
в соответствующих формулах выше.

Пример 1. Пусть ξ – n-мерная выборка из распределения Пуас-
сона, ξ ∼ P(λ). Тогда функция правдоподобия выборки равна

L(m,λ) def= Pλ(ξ1 = m1, . . . , ξn = mn) =

=
n∏

k=1

λmk

mk!
e−λ =

λ
∑n

k=1 mk

n∏
k=1

mk!
e−nλ, 0 < λ < ∞.

Здесь m = (m1, . . . , mn) и mk ∈ {0, 1, 2, . . .} для всех k = 1, . . . , n,
иначе L(m,λ) = 0.

Пример 2. Пусть ξ – выборка объема n из нормального распреде-
ления N(µ, σ2), θ = (µ, σ2). Тогда аналогично предыдущему при-
меру функция правдоподобия выборки равна

L(x, θ) =
n∏

k=1

1√
2πσ2

e−(xk−µ)2/2σ2
=

=
1

(2πσ2)n/2
e
−

n∑
k=1

(xk−µ)2/2σ2

, µ ∈ R, σ2 > 0.

Здесь x = (x1, . . . , xn) ∈ Rn.

Пример 3. Пусть ξ – выборка объема n. Каждая случайная ве-
личина ξk для k = 1, . . . , n принимает значение 1 с вероятностью θ
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и значение 0 с вероятностью 1 − θ, 0 < θ < 1. Запишем функцию
правдоподобия выборки там, где она отлична от нуля:

L(m, θ) = Pθ(ξ1 = m1) . . . Pθ(ξn = mn),

где mk ∈ {0, 1} для всех k = 1, . . . , n. В этом произведении каж-
дый сомножитель Pθ(ξk = mk) в функции правдоподобия равен
либо θ (если mk = 1), либо 1−θ (если mk = 0). Так как количество
сомножителей, равных θ, в точности равно числу составляющих
выборки m1, . . . , mn, равных единице, а остальные составляющие
равны нулю, мы можем найти это количество как

m1 + · · · + mn = nm, где m =
1
n

n∑
k=1

mk,

Отсюда
L(m, θ) = θnm(1 − θ)n−nm, 0 < θ < 1.

Перейдём к решению задач параметрической статистики и нач-
нём с задач точечного оценивания.

Точечная оценка – это такая статистика t(ξ) = t(ξ1, . . . , ξn), ко-
торая в определённом смысле близка к истинному значению пара-
метра θ. Напомним, что статистика не должна зависеть от неиз-
вестных параметров, и тогда мы можем найти её значение по за-
данной выборке, не зная параметр. Если нам будет важно, что объ-
ём выборки равен n, будем использовать для статистики обозначе-
ние tn(ξ).

Рассмотрим более общую задачу точечного оценивания: в ко-
торой интерес представляет не само значение θ, а значение, кото-
рое принимает заданная функция τ( · ) от аргумента θ, иначе гово-
ря, нас интересует значение τ(θ). Например, если задана выборка
из нормального распределения N(µ, σ2), то θ можно рассматри-
вать как двумерный параметр (µ, σ2) и интересоваться значениями
τ1(θ) = µ2 + σ2, τ2(θ) = µ или τ3(θ) = (µ, σ2) (в последнем случае
функция τ3(θ) = θ – тождественная функция, равная своему аргу-
менту).

Далее мы рассматриваем функции τ( · ) : Θ → R, т. е. функции
с числовыми значениями, соответственно статистика t(ξ) – это од-
номерная с.в. В сущности, точечной оценкой значения τ(θ) можно
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назвать любую статистику t(ξ), но понятно, что нас будут интере-
совать те, которые обладают какими-то полезными и желательны-
ми свойствами. Ниже мы дадим формальные определения таких
«хороших» свойств оценок.

2.2. Несмещённость и состоятельность
точечных оценок

Определение 2. Статистика t(ξ) называется несмещённой оцен-
кой значения τ(θ) функции τ( · ) параметра θ, если для любого
θ ∈ Θ выполнено равенство Mθ t(ξ) = τ(θ).

Здесь и далее индекс θ в обозначении Mθ математического ожи-
дания означает, что математическое ожидание вычисляется по рас-
пределению, определяемому значением параметра θ ∈ Θ:

Mθ t(ξ) =
∫

Rn

t(x)L(x, θ) dx =
∫

Rn

t(x)
n∏

k=1

p(xk; θ) dx

(здесь, как обычно, dx = dx1 . . . dxn), где p( · ; θ) – плотность веро-
ятности любой из с.в. ξk с параметром θ. Напомним, что мы услови-
лись писать формулы, отвечающие абсолютно непрерывному рас-
пределению с.в. ξ, тогда функция правдоподобия – это совместная
плотность вероятности с.в. ξ1, . . . , ξn. В случае дискретного распре-
деления интегралы, конечно, нужно заменять суммами.

Примером несмещённой оценки математического ожидания лю-
бой из (одинаково распределённых) с.в. ξk является выборочное
среднее ξ̄ = 1

n

∑n
k=1 ξk. Действительно, если это математическое

ожидание существует и равно µ, то в силу линейности математи-
ческого ожидания для любого µ

Mµ ξ̄ = Mµ

(
1
n

n∑
k=1

ξk

)
=

1
n

n∑
k=1

Mµ ξk = µ.

Оценка может не являться несмещённой, но её математическое
ожидание может стремиться к оцениваемой величине при стремле-
нии объёма выборки к бесконечности.

Определение 3. Статистика tn(ξ) называется асимптотически
несмещённой оценкой для τ(θ), если для любого θ ∈ Θ имеет место
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сходимость Mθ tn(ξ) → τ(θ) при n → ∞, где значение n равно
объёму выборки.

Пример 4. Пусть µ = Mξk, σ2 = Dξk. Найдём множитель C, при
котором статистика

C ·
n∑

k=1

(ξk − ξ̄)2

является несмещённой оценкой параметра σ2.
Простые алгебраические преобразования с учётом равенства∑n

k=1(ξk − µ) = n(ξ̄ − µ) дают

n∑
k=1

(ξk − ξ̄)2 =
n∑

k=1

[(ξk − µ) − (ξ̄ − µ)]2 =

=
n∑

k=1

(ξk − µ)2 − 2n(ξ̄ − µ)(ξ̄ − µ) + n(ξ̄ − µ)2 =

=
n∑

k=1

(ξk − µ)2 − n(ξ̄ − µ)2.

Вычисляем математические ожидания двух выражений в правой
части:

M
n∑

k=1

(ξk − µ)2 =
n∑

k=1

M(ξk − µ)2 = nσ2,

M(ξ̄ − µ)2 = M

(
1
n

n∑
k=1

(ξk − µ)
)2

=
1
n2

M
n∑

k=1

(ξk − µ)
n∑

j=1

(ξj − µ) =

=
1
n2

( n∑
k=1

M(ξk − µ)2 +
∑
k ̸=j

M(ξk − µ)(ξj − µ)
)

=

=
1
n2

nσ2 =
1
n

σ2,

где на последнем этапе мы учли, что в силу независимости элемен-
тов выборки M(ξk − µ)M(ξj − µ) = 0 при k 6= j. Отсюда

M

( n∑
k=1

(ξk − ξ̄)2
)

= M

n∑
k=1

(ξk − µ)2 − nM(ξ̄ − µ)2 = (nσ2 − σ2),
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следовательно, C = 1
n−1 , т. е. несмещённой оценкой дисперсии яв-

ляется

σ̂2 =
1

n − 1

n∑
k=1

(ξk − ξ̄ )2,

введённая нами в разделе 1.2.

Понятно, что статистика

S2 =
1
n

n∑
k=1

(ξk − ξ̄)2 = ξ2 − (ξ̄ )2

не является несмещённой оценкой дисперсии, её математическое
ожидание равно n−1

n σ2, но эта оценка является асимптотически
несмещённой.

Заметим также, что и σ̂2, и S2 не зависят от математическо-
го ожидания µ элементов выборки. Следовательно, их численное
значение можно найти, не зная µ, в отличие от, например, функ-
ции 1

n

∑n
k=1(ξk−µ)2, которая также является несмещённой оценкой

дисперсии, но совершенно бесполезна для решения нашей задачи,
если мы не знаем µ.

Замечание 1. Требование несмещённости может оказаться невы-
полнимым. Приведём пример. Пусть ξ – число успехов в серии
n независимых испытаний, θ – вероятность успеха при единичном
испытании. Требуется несмещённо оценить τ(θ) = 1/θ по выборке
ξ = k объема единица, т. е. в единственной серии из n испытаний
получено k успехов. Условие несмещённости оценки t(ξ) принимает
вид

Mθ t(ξ) =
n∑

j=0

t(k)Ck
nθk(1 − θ)n−k = θ−1, θ ∈ [0, 1].

Это равенство для всех θ ∈ [0, 1] невыполнимо при любой функции
t(k), k = 0, 1, . . . , n, ибо левая часть равенства – полином от аргу-
мента θ, его значение ограничено в точке θ = 0, а правая часть при
θ → 0 стремится к бесконечности.

Несмещённость оценки по сути означает отсутствие система-
тической погрешности оценивания, но при этом мы ничего не мо-
жем сказать о близости оценки к истинному значению параметра.
С этой точки зрения важно следующее свойство.
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Определение 4. Статистика t(ξ1, . . . , ξn) = tn(ξ) называется со-
стоятельной оценкой для τ(θ), если при любом θ ∈ Θ имеет место
сходимость по вероятности tn(ξ) → τ(θ) при n → ∞.

Заметим, что если в определении асимптотически несмещён-
ной оценки речь идёт о сходимости числовой последовательности
математических ожиданий Mtn(ξ) статистики tn(ξ), то в определе-
нии состоятельности оценки фигурирует сходимость по вероятно-
сти последовательности самих оценок tn(ξ) при n → ∞. Например,
состоятельность оценки tn(ξ) = ξ̄ математического ожидания с.в. ξ
в случае существования Dξj является следствием закона больших
чисел.

2.3. Несмещённые оценки минимальной дисперсии
Свойства несмещённости и состоятельности оценок не опреде-

ляют близость оценки tn(ξ) к оцениваемой величине τ(θ) при фик-
сированном объёме выборки. Чтобы численно охарактеризовать
погрешность оценивания, будем использовать отличие оценки от
оцениваемой величины в среднем квадратичном (с.к.).

Будем говорить, что оценка t(ξ) лучше оценки t̃(ξ) в с.к., если
для любого θ ∈ Θ

Mθ(τ(θ) − t(ξ))2 6 Mθ(τ(θ) − t̃(ξ))2

и хотя бы при одном θ ∈ Θ это неравенство строгое.
Существует ли оценка, наилучшая в с.к. для всех θ ∈ Θ? Если

не ограничивать класс возможных оценок, то ответ на этот вопрос
отрицательный. Действительно, пусть τ(θ) = θ и t(ξ) – наилучшая
в с.к. оценка для θ, т. е. для любой другой оценки t̃(ξ) при любом
θ ∈ Θ выполнено неравенство

Mθ(t(ξ) − θ)2 6 Mθ(t̃(ξ) − θ)2.

Пусть θ1 – произвольный элемент множества Θ. Рассмотрим ста-
тистику t1(ξ) ≡ θ1, не зависящую от выборки ξ. Тогда в силу пред-
положения

Mθ(t(ξ) − θ)2 6 Mθ(t1(ξ) − θ)2 = Mθ(θ1 − θ)2, θ ∈ Θ.

В частности, при θ = θ1 получим Mθ(t(ξ) − θ)2 6 0, что, очевидно,
равносильно Mθ(t(ξ) − θ)2 = 0. Равенство нулю математического
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ожидания неотрицательной с.в. возможно только в случае, когда
она равна нулю с вероятностью единица, т. е. когда t(ξ) = θ для лю-
бого θ ∈ Θ (оценка в точности отгадывает неизвестный параметр).
Это в свою очередь возможно только для неинтересной с точки
зрения математической статистики задачи, в которой множество Θ
состоит из одного априори известного значения параметра.

Однако если сузить класс точечных оценок, рассматривая толь-
ко несмещённые оценки для τ(θ), то в ряде случаев можно указать
наилучшую в с.к. несмещённую оценку. Поскольку для несмещён-
ных оценок Mθ t(ξ) = τ(θ), с.к. погрешность такой оценки равна её
дисперсии: Mθ(t(ξ) − τ(θ))2 = Dθ(t(ξ).

Всюду далее мы рассматриваем оценки с конечным вторым мо-
ментом Mθ t2(ξ) или, что то же самое, с конечной дисперсией, по-
скольку бесконечная дисперсия означает бесконечную с.к. погреш-
ность оценивания, и полезность такой оценки невелика.

Определение 5. Оценка, наилучшая в с.к. в классе несмещённых
оценок, называется несмещённой оценкой минимальной дисперсии
(НОМД).

Формально НОМД t∗(ξ) является общим для всех θ ∈ Θ реше-
нием задачи на условный экстремум

Mθ(t∗(ξ) − τ(θ))2 = min
t : Mθt(θ)=τ(θ)

Mθ(t(ξ) − τ(θ))2. (2.3)

Такие оценки весьма привлекательны, поскольку они не содержат
систематической погрешности и имеют минимальный в с.к. разброс
значений вокруг оцениваемой величины. Однако в общем случае
найти такую оценку нелегко.

Замечание 2. Требование несмещённости не может уменьшить
с.к. ошибку оценивания. Действительно, если K – некоторый класс
точечных оценок, то

min
t∈K

Mθ(t(ξ) − τ(θ))2 6 min
t(ξ)∈K,

Mθt(ξ)=τ(θ)

Mθ(t(ξ) − τ(θ))2,

так как в правой части этого неравенства минимум ищется по более
узкому классу K ∩ {t(ξ) : Mθ t(ξ) = τ(θ)}.
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Теорема 1. Если оценки t1(ξ) и t2(ξ) являются НОМД для зна-
чения τ(θ), то t1(ξ) = t2(ξ) с вероятностью единица.

Доказательство . Для краткости формул не будем писать ниж-
ний индекс θ у математических ожиданий и дисперсий, поскольку
все наши расуждения верны для любого θ.

Образуем новую оценку

t(ξ) =
t1(ξ) + t2(ξ)

2
,

Mt(ξ) = Mt1(ξ) = Mt2(ξ) = τ(θ),

т. е. t(ξ), как и t1(ξ), t2(ξ), – несмещённая оценка для τ(θ). Вычис-
лим её дисперсию:

Dt(ξ) =
Dt1(ξ) + Dt2(ξ) + 2 cov(t1(ξ), t2(ξ))

4
.

Обозначим дисперсию НОМД как Dt1(ξ) = Dt2(ξ) = d2 = d2(θ),
очевидно, что дисперсии обеих оценок равны, так обе они совпа-
дают с минимальной дисперсией. Далее, пользуясь неравенством
Коши–Буняковского для ковариаций | cov(t1(ξ), t2(ξ))| 6

√
d2 · d2,

получим

Dt(ξ) 6 d2 + d2 + 2d2

4
= d2.

Однако Dt(ξ) не может быть меньше d2, так как это минимальное
возможное значение дисперсии несмещённой оценки. Следователь-
но, выполняется равенство

d2 = Dt(ξ) =
d2 + d2 + 2 cov(t1(ξ), t2(ξ))

4
,

а это равносильно тому, что cov(t1(ξ), t2(ξ)) =
√

d2 · d2. По свой-
ствам неравенства Коши–Буняковского тогда с вероятностью еди-
ница выполняется равенство

t(ξ) − τ(θ) = a(t2(ξ) − τ(θ)),

где коэффициент a неслучаен, но может зависеть от θ. Но тогда
d2 = cov(t1(ξ), t2(ξ)) = ad2, откуда a = 1, и поэтому t1(ξ) = t2(ξ)
с вероятностью единица.
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Докажем одно вспомогательное утверждение из теории вероят-
ностей.

Лемма 1. Рассмотрим класс с.в.

H = {η : Mη = 0, Mη2 < ∞}.

C.в. α∗ ∈ H удовлетворяет условию Mα2
∗ 6 Mα2 для любой α ∈ H

тогда и только тогда, когда Mα∗η = 0 для всех η ∈ H.

Доказательство . Возьмём любую α ∈ H и положим η = α−α∗.
Тогда Mη = Mα−Mα∗ = 0, и по неравенству Коши–Буняковского

Mη2 = Mα2 − 2Mαα∗ + Mα2
∗ 6 Mα2 + 2

√
Mα2 · Mα2

∗ + Mα2
∗ =

=
[√

Mα2 +
√

Mα2
∗

]2
< ∞,

т. е. η ∈ H. Рассмотрим разность

∆ def= Mα2 − Mα2
∗ = M(α∗ + η)2 − Mα2

∗ = 2Mα∗η + Mη2
∗.

Если Mα∗η = 0 для всех η ∈ H, то ∆ = Mη2
∗ > 0 и Mα2 > Mα2

∗
для любой α ∈ H.

Пусть теперь, наоборот, ∆ > 0 для любой α ∈ H. Предполо-
жим, что найдётся η ∈ H, для которой Mα∗η 6= 0. Тогда возьмём
произвольное неслучайное число a ∈ R и рассмотрим α = α∗ + aη.
Очевидно, что α ∈ H и для такой α

∆ = Mα2 − Mα2
∗ = 2a · Mα∗η + a2Mη2

∗.

График правой части этого равенства как функция от a пред-
ставляет собой параболу, ветви которой направлены вверх и ко-
торая (при условии Mα∗η 6= 0) имеет ровно два различных корня:
a = 0 и a = −Mα∗η/Mη2

∗. При значениях a, лежащих между кор-
нями, правая часть неравенства строго отрицательна, и при этом
для α = α∗ + aη мы имеем ∆ < 0, что противоречит изначальному
предположению. Таким образом, не могут существовать η ∈ H, для
которых Mα∗η 6= 0. Лемма доказана.

Из этой леммы, положив α∗ = t(ξ) − τ(θ) для несмещённой
оценки t(ξ) (тогда Mα∗ = 0, Mα2

∗ = Dθ t(ξ)), напрямую получаем
следующее утверждение.



34 ГЛАВА 2. ТОЧЕЧНЫЕ ОЦЕНКИ ПАРАМЕТРОВ

Теорема 2. Пусть t(ξ) – несмещённая оценка для τ(θ) для любо-
го θ. Оценка t(ξ) является НОМД тогда и только тогда, когда для
любой статистики η(ξ), такой что Mθη(ξ) = 0, Mθ η2(ξ) < ∞,
при каждом θ выполнено равенство Mθ t(ξ)η(ξ) = 0.

2.4. Эффективные оценки
В этом разделе мы покажем, что дисперсию несмещённых оце-

нок можно ограничить снизу. Это означает, что при определён-
ных условиях нельзя получить с.к. точность несмещённого оцени-
вания выше некоторого предела. Затем представим метод построе-
ния НОМД определённого типа, называемых эффективными оцен-
ками.

Пусть ξ = (ξ1, . . . , ξn) – выборка из (абсолютно непрерывного)
распределения с.в. с функцией правдоподобия

L(x, θ) = p(x1; θ) . . . p(xn; θ), x = (x1, . . . , xn) ∈ Rn,

и R = {x ∈ Rn : L(x, θ) > 0} – множество реализаций.

Теорема 3 (Крамера–Рао). Пусть θ ∈ R, t(ξ) – несмещённая
оценка значения τ(θ), множество реализаций R не зависит от
θ ∈ R и существуют производные ∂ ln L(x,θ)

∂θ , τ ′(θ) = dτ(θ)
dθ при всех

x ∈ R, θ ∈ R. Предположим, что для данных L( · ) и t( · ) допусти-
мо вносить производные под знак интегралов:

d

dθ

∫
R

L(x, θ) dx =
∫

R

∂L(x, θ)
∂θ

dx, (2.4)

d

dθ

∫
R

t(x)L(x, θ) dx =
∫

R
t(x)

∂L(ξ, θ)
∂θ

dx. (2.5)

Тогда

Dθ t(ξ) > [τ ′(θ)]2

Mθ

(∂ ln L(ξ,θ)
∂θ

)2
, (2.6)

причём равенство здесь выполняется тогда и только тогда, когда
с вероятностью единица

∂ ln L(ξ, θ)
∂θ

= a(θ)(t(ξ) − τ(θ)) (2.7)

для некоторой функции a(θ), θ ∈ R.
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Доказательство . При условиях теоремы из равенств (2.4) и (2.5)
следует, что∫

R

∂ ln L(x, θ)
∂θ

L(x, θ) dx =
d

dθ

∫
R

L(x, θ) dx =
d

dθ
1 = 0,∫

R
t(x)

∂ ln L(ξ, θ)
∂θ

L(x, θ) dx =
d

dθ

∫
R

t(x)L(x, θ) dx =

=
d Mθ t(ξ)

dθ
= τ ′(θ).

Умножая первое равенство на τ(θ) и вычитая из второго, получаем∫
R
(t(x) − τ(θ))

∂ ln L(x, θ)
∂θ

L(x, θ)dx = τ ′(θ)

или
τ ′(θ) = Mθ

[
(t(ξ) − τ(θ)) · ∂ ln L(ξ, θ)

∂θ

]
. (2.8)

Следовательно, возведя обе части неравенства в квадрат и при-
менив неравенство Коши–Буняковского вида (Mαβ)2 6 Mα2Mβ2

для двух сомножителей в правой части (2.8), имеем

[τ ′(θ)]2 6 Mθ[(t(ξ) − τ(θ))]2 · Mθ

[
∂ ln L(ξ, θ)

∂θ

]2

=

= Dθ t(ξ) · Mθ

[
∂ ln L(ξ, θ)

∂θ

]2

, (2.9)

отсюда после простейших преобразований получаем неравенство
Крамера–Рао (2.6).

Равенство в неравенстве Коши–Буняковского, т. е. в (2.9) или,
эквивалентно, в (2.6) имеет место, если и только если в исполь-
зованном неравенстве Коши–Буняковского достигается равенство.
Это эквивалентно тому, что с.в. ∂ ln L(ξ,θ)

∂θ и (t(ξ) − τ(θ)) линейно
зависимы, т. е. с вероятностью единица выполнено равенство (2.7)
для некоторого коэффициента a(θ), который не зависит от ξ, но
может зависеть от θ.

Определение 6. Несмещённая оценка t(ξ) называется эффектив-
ной, если для неё выполнены условия теоремы Крамера–Рао и

Dθ t(ξ) =
[τ ′(θ)]2

Mθ

(∂ ln L(x,θ)
∂θ

)2
. (2.10)
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Иными словами, эффективная оценка – это такая несмещённая
оценка, для которой неравенство Крамера–Рао превращается в ра-
венство. Для эффективной оценки, как мы знаем, с вероятностью
единица справедливо равенство (2.7), откуда

a2(θ) · Mθ(t(ξ) − τ(θ))2 = Mθ

(
∂ ln L(ξ, θ)

∂θ

)2

.

Подставляя выражение для математического ожидания в правой
части этого равенства в знаменатель формулы (2.10), получаем,
что для эффективной оценки

Dθ t(ξ) =
[τ ′(θ)]2

a2(θ) Dθ t(ξ)
. (2.11)

Разрешая это уравнение относительно Dθ t(ξ) > 0, получаем ещё
одно выражение для дисперсии эффективной оценки через коэф-
фициент a(θ):

Dθ t(ξ) =
∣∣∣∣τ ′(θ)
a(θ)

∣∣∣∣. (2.12)

Если выполнены условия теоремы Крамера–Рао и t(ξ) – эффек-
тивная оценка для τ(θ), то t(ξ) является НОМД. Обратное утвер-
ждение неверно, так как эффективная оценка существует только
для таких τ(θ), для которых выполнены условия теоремы Краме-
ра–Рао и равенство (2.7). Это налагает существенные ограничения
на вид функции правдоподобия и функции τ(θ), θ ∈ Θ.

Теорема Крамера–Рао верна и для дискретных распределений.
В этом случае плотность вероятности p( · ) с.в. ξ следует заменить
на вероятность Pθ(ξ = x), а интегрирование – на суммирование.

Пример 5. Пользуясь дискретным вариантом теоремы, построим
эффективную оценку неизвестного параметра λ ∈ (0,∞) распреде-
ления Пуассона по выборке ξ1, . . . , ξn объема n. Найдём логарифм
функции правдоподобия: для λ ∈ (0,∞), m = (m1, . . . , mn)

ln L(m,λ) = ln
n∏

k=1

λmk

mk!
e−λ =

n∑
k=1

(−λ + mk ln λ − ln(mk!)),

где mk ∈ {0, 1, . . .} для k = 1, . . . , n. Тогда

∂ ln L(m,λ)
∂λ

=
n∑

k=1

(
−1 +

mk

λ

)
=

n

λ

(
1
n

n∑
k=1

mk − λ

)
.
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Подставляя вместо m аргумент ξ, получаем

∂ ln L(ξ, λ)
∂λ

=
n

λ

(
1
n

n∑
k=1

ξk − λ

)
=

n

λ
(ξ̄ − λ).

Видно, что для t(ξ) = ξ̄ равенство (2.7) выполнено при a(λ)= n/λ,
поэтому ξ̄ – эффективная оценка параметра λ, а её дисперсия рав-
на λ/n.

Пример 6. Пусть ξ = (ξ1, . . . , ξn) – выборка объема n из нормаль-
ного распределения N(θ, σ2) с известной дисперсией; неизвестным
параметром распределения является математическое ожидание θ.
Запишем логарифм функции правдоподобия и его производную
по θ:

ln L(x, θ) = ln
[

1

(
√

2πσ2 )n
exp

(
− 1

2σ2

n∑
i=1

(xi − θ)2
)]

=

= −n

2
ln(2πσ2) − 1

2σ2

n∑
i=1

(xi − θ)2,

∂ ln L(x, θ)
∂θ

=
1
σ2

n∑
i=1

(xi − θ) =
n

σ2

(
1
n

n∑
i=1

xi − θ

)
.

Последняя формула при τ(θ) = θ и x = ξ имеет вид (2.7), когда

t(ξ) = ξ̄ =
1
n

n∑
i=1

ξi, a(θ) =
n

σ2
.

Следовательно, ξ̄ – эффективная оценка параметра µ при извест-
ной σ2, дисперсия этой оценки, определяющая ее с.к. погрешность,
согласно (2.12) равна

Dθ t(ξ) =
∣∣∣∣τ ′

a

∣∣∣∣ =
σ2

n
,

что, впрочем, и так очевидно.

Пример 7. Пусть теперь в условиях предыдущего примера мате-
матическое ожидание нормального распределения известно, а неиз-
вестным параметром является корень из дисперсии, θ = σ. Пусть



38 ГЛАВА 2. ТОЧЕЧНЫЕ ОЦЕНКИ ПАРАМЕТРОВ

τ(σ) = σ2. Тогда, найдя производную по σ логарифма функции
правдоподобия,

−n

σ
+

1
σ3

n∑
j=1

(xj − µ)2 =
n

σ3

(
−σ2 +

1
n

n∑
j=1

(xj − µ)2
)

,

получим соотношение (2.12) sпри

t(ξ) =
1
n

n∑
j=1

(xj − µ)2, a(θ) =
n

σ3
.

Следовательно, t(ξ) – эффективная оценка для σ2 при известном µ,
и её дисперсия равна

Dθ t(ξ) =
∣∣∣∣τ ′

a

∣∣∣∣ =
2σ

n
σ3 =

2σ4

n
.

Экспоненциальное семейство распределений
Предыдущие примеры можно обобщить, рассмотрев так назы-

ваемое экспоненциальное семейство, состоящее из распределений
с плотностями вероятности вида

p(x, θ) = ea(θ)b(x)+c(θ)+d(x), θ ∈ Θ ⊆ R, x ∈ R,

где a( · ), c( · ) – заданные функции параметра θ, дифференцируе-
мые при всех θ ∈ Θ, а b( · ) и d( · ) – заданные функции из R в R.
Для выборок размера n из таких распределений функция правдо-
подобия имеет вид

L(x, θ) = exp
{

a(θ)
n∑

k=1

b(xk) + nc(θ) +
n∑

k=1

d(xk)
}

,

отсюда

∂ ln L(x, θ)
∂θ

= a′(θ)
n∑

k=1

b(xk) + nc′(θ) = na′(θ)
(

1
n

n∑
k=1

b(xk) +
c′(θ)
a′(θ)

)
.

Следовательно, согласно (2.12) статистика t(ξ) = 1
n

∑n
j=1 b(ξj) яв-

ляется эффективной оценкой для − c′(θ)
a′(θ) , и ее дисперсия равна

Dθ t =
∣∣∣∣( c′(θ)

a′(θ)

)′ 1
na′(θ)

∣∣∣∣,
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если функция L( · ), а также функции

τ(θ) = − c′(θ)
a′(θ)

, θ ∈ Θ, t(x) =
1
n

n∑
k=1

b(xk), xk ∈ R,

удовлетворяют условиям теоремы Крамера–Рао.
К экспоненциальному семейству относятся нормальное распре-

деление, распределения Бернулли, Пуассона, хи-квадрат и др.

2.5. Достаточные статистики
Одной из существенных проблем статистического анализа яв-

ляется проблема анализа «больших выборок», т. е. таких, которые
не вмещаются в память одного компьютера. Одним из подходов
к её решению является такое сжатие данных, которое бы не при-
водило к потере информации, важной для решения поставленной
задачи.

Как видно из рассмотренных примеров, часто для оценивания
параметров распределения не требуется знание всей выборки, до-
статочно знать, чему равна некоторая функция от выборочных
значений. Так, для оценки математического ожидания нормаль-
но распределённой с.в. достаточно знать сумму ξ1 + · · · + ξn = nξ̄
всех элементов выборки, а не значение каждой с.в. ξk выборки в
отдельности. Для оценки дисперсии с.в. ξ при известном математи-
ческом ожидании µ достаточно знать сумму квадратов отклонений
(ξ1−µ)2+· · ·+(ξn−µ)2 выборочных значений от их математических
ожиданий, а при неизвестном µ – сумму квадратов выборочных
значений ξ2

1 + · · · + ξ2
n = nξ2 и nξ̄.

Оказывается, что во многих случаях для оценивания парамет-
ра θ распределения выборки ξ = (ξ1, . . . , ξn) можно указать неко-
торую статистику

T (ξ) =
(
T1(ξ), . . . , Tm(ξ)

)
∈ Rm, m < n, (2.13)

в известном смысле содержащую всю информацию о параметре θ.

Определение 7. m-Мерная статистика T (ξ) называется доста-
точной для семейства функций правдоподобия L( · , θ), θ ∈ Θ, ес-
ли условное распределение выборки ξ = (ξ1, . . . , ξn) при условии
T (ξ) = const не зависит от θ.
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Напомним, что такое условное распределение. Пусть две (для
простоты одномерные) с.в. α и β имеют совместное распределение.
Тогда условное распределение с.в. α при фиксированной β = b за-
даётся следующим образом: в дискретном случае – как ряд услов-
ных вероятностей

P (α = aj |β = b) =
P (α = aj , β = b)

P (β = b)
, j = 1, . . . , M 6 ∞, (2.14)

а в абсолютно непрерывном случае – как условная плотность ве-
роятности

pα|β(a|b) =
pα,β(a, b)

pβ(b)
, a ∈ R, (2.15)

или, в дифференциальной форме,

pα|β(a|b) da = P (a 6 α < a + da | b 6 β < b + db)

(сравните с pα(a) da = P (a 6 α < a + da)). Условные распределе-
ния определены для любых значений b, для которых в дискретном
случае P (β = b) 6= 0, а в абсолютно непрерывном случае pβ(b) 6= 0.
Как функции от значения с.в. α условные распределения при фик-
сированном b обладают всеми свойствами обычных распределений,
в частности удовлетворяют условию нормировки

n∑
j=1

P (α = aj |β = b) = 1,

∫ ∞

−∞
pα|β(a|b) da = 1

для соответственно дискретного и абсолютно непрерывного рас-
пределений. Также справедлива формула полной вероятности

P (α = aj) =
∑

b

P (α = aj |β = b)P (β = b),

pα(a) =
∫

b : pβ(b)̸=0

pα|β(a|b)pβ(b) db =

∞∫
−∞

pα|β(a|b)pβ(b) db.

Если с.в. α и β независимы, то условные распределения совпадают
с безусловными.

Применим эти конструкции к понятию достаточной статисти-
ки. Мы имеем две с.в. – выборку, т. е. n-мерную с.в. ξ, и m-мерную
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статистику T (ξ). Как устроено условное распределение ξ при фик-
сированной T (ξ) = s, проще всего понять в случае дискретного
распределения выборки. Пусть заданы вероятности

Pθ(ξk = xj), j = 1, 2, . . . , M 6 ∞,
M∑

j=1

Pθ(ξk = xj) = 1, (2.16)

для каждого представителя ξk, k = 1, . . . , n, выборки ξ размера n.
Функция правдоподобия и вероятность события T (ξ) = s в этом
случае задаются как

L(x, θ) =
n∏

k=1

Pθ(ξk = xj), Pθ(T (ξ) = s) =
∑

x : T (x)=s

L(x, θ)

для x = (x1, . . . , xn). Если Pθ(T (ξ) = s) отлична от нуля, то

Pθ(ξ = x | T (ξ) = s) =
Pθ(ξ = x, T (ξ) = s)

Pθ(T (ξ) = s)
. (2.17)

Если статистика T (ξ) является достаточной, то дробь в правой ча-
сти не зависит от θ.

Легко понять, что если x таков, что T (x) 6= s, то в числите-
ле (2.17) стоят несовместные события и тогда

Pθ(ξ = x | T (ξ) = s) = 0,

что, конечно, не зависит от θ. Если x таков, что T (x) = s, то собы-
тие ξ = x влечёт T (ξ) = s, и тогда

Pθ(ξ = x, T (ξ) = s) = Pθ(ξ = x).

Таким образом,

P (ξ = x | T (ξ) = s) =


Pθ(ξ = x)

Pθ(T (ξ) = s)
, T (x) = s,

0, T (x) 6= s,

Pθ(T (ξ) = s) =
∑

x : T (x)=s

Pθ(ξ = x).

(2.18)

Если значение достаточной статистики фиксировано, T (ξ) = s,
то изменение параметра θ не влияет на условное распределение
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случайной выборки ξ. Можно сказать, что вся информация о па-
раметре θ содержится в значении достаточной статистики T (ξ).

В некоторых случаях доказать свойство достаточности стати-
стики можно прямым вычислением условного распределения вы-
борки при T (ξ) = s ∈ Rm. Далее для простоты мы рассматрива-
ем одномерные (m = 1) достаточные статистики и обозначаем их
как T (ξ).

Пример 8. Рассмотрим с.в., принимающую значение 1 с вероятно-
стью p и значение 0 с вероятностью q, q+p = 1 (распределение Бер-
нулли). Выборка объёма n из такого распределения представляет
собой последовательность из n нулей и единиц. Числовая статисти-
ка T (ξ) =

∑n
i=1 ξi даёт число успехов в серии n независимых испы-

таний Бернулли. Покажем, что T (ξ) является достаточной стати-
стикой для семейства распределений Бернулли с параметром θ = p.

Запишем распределение выборки ξ = (ξ1, . . . , ξn) при T (ξ) = k,
пользуясь определением условной вероятности:

P (ξ1 = k1, . . . , ξn = kn |T (ξ) = k) =

=
P (ξ1 = k1, . . . , ξn = kn, T (ξ) = k)

P (T (ξ) = k)
, (2.19)

где ki ∈ {0, 1} для i = 1, . . . , n. При k1 + · · · + kn = k числитель
дроби в (2.19) равен pkqn−k. Если же k1 + · · · + kn 6= k, то события
{ξ1 = k1, . . . , ξn = kn} и T (ξ) = k несовместны, и числитель равен
нулю. Величина знаменателя даётся формулой Бернулли:

P (T (ξ) = k) = Ck
npkqn−k,

в результате имеем

P (ξ1 = k1, . . . , ξn = kn |T (ξ) = k) =

{
1/Ck

n, T (ξ) = k,

0, T (ξ) 6= k,

и условное распределение не зависит от p, а значит, число успе-
хов T (ξ) в серии из n независимых испытаний Бернулли является
достаточной статистикой для параметра p.

Прямая проверка независимости условного распределения вы-
борки от θ не всегда удобна, но существует необходимое и доста-
точное условие достаточности статистики T (ξ).
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Теорема 4 (о факторизации). Статистика T (ξ) является до-
статочной для семейства функций правдоподобия L( · , θ), θ ∈ Θ,
тогда и только тогда, когда функция правдоподобия на множе-
стве реализаций Rθ может быть представлена в виде

L(x, θ) = g(T (x), θ)h(x), x ∈ Rθ, θ ∈ Θ. (2.20)

Доказательство. Приведем доказательство для дискретного рас-
пределения, считая, что выполнено (2.16). Пусть θ ∈ Θ произволь-
но, но фиксировано.

Пусть выполнено условие (2.20), покажем, что статистика T (ξ)
является достаточной для θ. Для этого вычислим условное рас-
пределение Pθ(ξ = x | T (ξ) = s), пользуясь формулой (2.18). Если
T (x) 6= s, то искомая условная вероятность равна нулю и не зави-
сит от θ. Если x таков, что T (x) = s, то в силу представления (2.20)
для L(x, θ) = Pθ(x) имеем

P (ξ = x|T (ξ) = s) =
L(x, θ)∑

x : T (x)=s

L(x, θ)
=

g(s, θ)h(x)∑
x : T (x)=s

g(T (x), θ)h(x)
=

=
g(s, θ)h(x)∑

x : T (x)=s

g(s, θ)h(x)
=

h(x)∑
x : T (x)=s

h(x)
,

т. е. условное распределение выборки ξ1, . . . , ξn при фиксированной
T (x) = s не зависит от θ, что и требовалось доказать.

Пусть теперь T (ξ) – достаточная статистика для θ, покажем,
что тогда выполнено (2.20). Тогда для любого x ∈ R событие ξ = x

влечёт событие T (ξ) = T (x) def= s, и мы имеем

L(x, θ) = Pθ(ξ = x) = Pθ(ξ = x, T (ξ) = s) =
= P (ξ = x | T (ξ) = s)Pθ(T (ξ) = s), s = T (x). (2.21)

Условное распределение выборки ξ при фиксированном T (x) = s
не зависит от θ, поэтому мы не пишем индекс θ в первом множителе
в правой части (2.21). Второй множитель полностью определяется
значением θ и значением s достаточной статистики, и его можно
записать как g(s, θ) для некоторой функции g( · ), которая в сущ-
ности задаёт зависимость вероятности Pθ(T (ξ) = s) от θ и s. Ана-
логично первый множитель зависит от x и s, но не зависит от θ
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в силу достаточности статистики T (ξ). Поэтому можно записать
его как H(x, s) для некоторой функции H( · ). В результате (2.21)
принимает вид

L(x, θ) = g(s, θ)H(x, s), x ∈ R, s = T (x),

Введём функцию h(x) = H(x, T (x)), x ∈ R, тогда, подставляя T (x)
вместо s получаем,

L(x, θ) = g(T (x), θ)h(x), x ∈ R, θ ∈ Θ.

Замечание 3. Если T (ξ) – достаточная статистика для θ, то любая
взаимно однозначная функция от T также является достаточной
статистикой для θ.

Пример 9. Пусть ξ = (ξ1, . . . , ξn) – выборка объема n из нормаль-
ного распределения N(θ, 1). Как показывают простые алгебраиче-
ские преобразования, её функцию правдоподобия можно привести
к нужному виду,

L(x, θ) =
(

1√
2π

)n

exp
{
−1

2

n∑
i=1

(xi − θ)2
}

= g(T (x), θ)h(x),

если положить

T (x) =
n∑

i=1

xi = nx̄,

g(T (x), θ) = exp
{

θ
n∑

i=1

xi −
n

2
θ2

}
,

h(x) =
(

1√
2π

)n

exp
{
−1

2

n∑
i=1

x2
i

}
.

Следовательно, T (ξ) = nξ̄ – достаточная статистика для θ.

Замечание 4. Если при выполнении условия теоремы Крамера–
Рао t(ξ) – эффективная оценка, то t(ξ) также является достаточной
статистикой. В самом деле, мы имеем для всех x ∈ R и θ ∈ Θ

∂ ln L(x, θ)
∂θ

= a(θ)(t(x)−τ(θ)) = a(θ)t(x)−a(θ)τ(θ) = a(θ)t(x)−b(θ),

где b(θ) = a(θ)τ(θ). Проинтегрируем равенство для производной
по θ:

ln L(x, θ) = t(x)A(θ) − B(θ) + c(x),
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где A( · ), B( · ) – первообразные функций a( · ), b( · ) на Θ, а c(x) –
«постоянная» интегрирования. Тогда

L(x, θ) = et(x)A(θ)−B(θ) · ec(x),

и условие факторизации (2.20) для функции правдоподобия L(x, θ)
выполнено при

g(t(x), θ) = et(x)A(θ)−B(θ), h(x) = ec(x).

Если НОМД существует, то её можно найти как функцию от
достаточной статистики. Этот факт является следствием теоремы
Блекуэлла–Колмогорова (часто её также называют теоремой Рао–
Блекуэлла–Колмогорова). Прежде чем мы перейдём к формули-
ровке и доказательству этой теоремы, вспомним, что такое услов-
ное математическое ожидание.

Мы имеем выборку ξ как n-мерную с.в. и одномерную достаточ-
ную статистику T (ξ). Рассмотрим условное математическое ожи-
дание статистики t(ξ) при фиксированном значении T (ξ) = s, для
ясности считая, что выборка ξ распределена дискретно:

M(t(ξ)|T (ξ) = s) =
∑
x∈R

t(x)P (ξ = x |T (ξ) = s) =

=
∑

x : T (x)=s

t(x)P (ξ = x |T (ξ) = s). (2.22)

Здесь мы учли, что P (ξ = x |T (ξ) = s) 6= 0, только если s = T (x).
Условное математическое ожидание не зависит от θ в силу опре-
деления достаточной статистики, но, конечно, зависит от s. Оно
является специфической функцией на множестве S значений до-
статочной статистики: M(t(ξ)|T (ξ) = s) = E(s), s ∈ S. Тогда мы
можем ввести с.в. E(T ) (функцию от достаточной статистики) по
стандартному правилу: если T (ξ) = s, то эта с.в. равна E(s).

Справедлива формула, которую можно назвать последователь-
ным усреднением:

Mθ t(ξ) =
∑
s∈S

M(t(ξ)|T (ξ) = s)Pθ(T (ξ) = s) =
∑
s∈S

E(s)Pθ(T (ξ) = s),

другими словами, мы сначала усредняем t(ξ), считая T (ξ) фиксиро-
ванной, а затем усредняем по всем значениям T (ξ). Доказательство
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этой формулы простое: в силу леммы о суммировании по блокам

Mθ t(ξ) =
∑
x∈R

t(x)Pθ(ξ = x) =
∑
s∈S

∑
x : T (x)=s

t(x)Pθ(ξ = x) =

=
∑
s∈S

( ∑
x : T (x)=s

t(x)
Pθ(ξ = x)

Pθ(T (ξ) = s)

)
Pθ(T (ξ) = s) =

=
∑
s∈S

( ∑
x : T (x)=s

t(x)P (ξ = x |T (ξ) = s)
)

Pθ(T (ξ) = s).

С учетом (2.22) мы понимаем, что в круглых скобках стоит в точно-
сти M(t(ξ)|T = s), а суммирование по всем s с весами Pθ(T (ξ) = s)
даёт математическое ожидание по распределению с.в. T (ξ). Фор-
мулу последовательного усреднения можно записать как

Mθ t(ξ) = Mθ E(T ), E(s) = M(t(ξ)|T (ξ) = s), s ∈ S, (2.23)

где математическое ожидание Mθ t(ξ) вычисляется по распределе-
нию с.в. t(ξ), а математическое ожидание Mθ E(T ) – по распреде-
лению с.в. T (ξ).

До сих пор мы рассматривали M(t(ξ)|T (ξ) = s) как функ-
цию E(s) от значения достаточной статистики, но это математи-
ческое ожидание также является функцией от значения выборки:
если ξ = x, то M(t(ξ)|T (ξ) = s) = E(s) при s = T (x), другим сло-
вами M(t(ξ)|T (ξ) = s) = E(T (x)). Таким образом, мы имеем с.в.
t̂(ξ) = E(T (ξ)), и эта с.в. зависит только от выборки и не зависит
от θ, т. е. является статистикой.

Теперь мы готовы доказать теорему Блекуэлла–Колмогорова
(для дискретного распределения выборки).

Теорема 5. Пусть t(ξ) — несмещённая оценка для τ(θ) ∈ R, T (ξ) –
одномерная достаточная статистика для θ. Тогда условное ма-
тематическое ожидание t̂(ξ) = Mθ(t(ξ)|T (ξ)) удовлетворяет не-
равенству

Mθ[t(ξ) − τ(θ)]2 > Mθ[t̂(ξ) − τ(θ)]2. (2.24)

Доказательство . Пусть θ ∈ Θ произвольно, но фиксировано.
Если t(ξ) – несмещённая оценка для τ(θ), то t̂(ξ) – тоже несме-

щённая оценка. Это напрямую вытекает из (2.23): с учётом того,
что t̂(ξ) = E(T ),

τ(θ) = Mθ t(ξ) = Mθ E(T ) = Mθ t̂(ξ).
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Теперь оценим дисперсию статистики t̂(ξ). Для простоты фор-
мул будем писать T = s вместо T (ξ) = s. Имеем

Dθ t̂(ξ) = Mθ

[
E(T ) − τ(θ)

]
2 =

∑
s∈S

[
E(s) − τ(θ)

]
2Pθ(T = s) =

=
∑
s∈S

[
M(t(ξ) |T = s) − τ(θ)

]
2Pθ(T = s). (2.25)

Рассмотрим выражение в квадратных скобках. Для любой с.в. α
и любой неслучайной c мы имеем Mα − c = M(α − c) независи-
мо от того, по какому распределению (обычному или условному)
вычисляется математическое ожидание. Поэтому для любого s ∈ S

M(t(ξ) |T = s) − τ(θ) = M(t(ξ) − τ(θ) |T = s).

Также всегда верно неравенство [Mα]2 6 Mα2, поэтому[
M(t(ξ) − τ(θ) |T = s)

]
2 6 M

[
(t(ξ) − τ(θ))2 |T = s].

Подставим эти соотношения в (2.25), получим

Dθ t̂(ξ) 6
∑
s∈S

M
[
(t(ξ) − τ(θ))2 |T = s]Pθ(T = s) =

=
∑
s∈S

( ∑
x : T (x)=s

(t(x) − τ(θ))2P (ξ = x |T = s)
)

Pθ(T = s) =

=
∑
s∈S

∑
x : T (x)=s

(t(x) − τ(θ))2Pθ(ξ = x) =

=
∑
x∈R

(t(x) − τ(θ))2Pθ(ξ = x) = Dθt(ξ).

Неравенство Dθ t̂(ξ) 6 Dθ t(ξ) доказано.

Замечание 5. Для доказательства теоремы не требуется доста-
точность статистики T (ξ), но это условие гарантирует, что мы мо-
жем вычислить значение статистики t̂(x) при реализации ξ = x,
не зная параметр θ. Действительно, по определению достаточной
статистики условное распределение t(ξ) при условии T (ξ) = s не за-
висит от θ, следовательно, условное математическое ожидание t(ξ)
также не зависит от θ.
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Доказанная теорема позволяет утверждать, что НОМД следует
искать как функцию от достаточной статистики (конечно, если она
существует). В самом деле, пусть t(ξ) – НОМД для τ(θ). Поскольку
условное математическое ожидание Mθ(t(ξ) |T (ξ)) статистики t(ξ)
также является несмещённой оценкой для τ(θ) и не увеличивает
её дисперсию в силу доказанной теоремы, но и не уменьшает её
(так как t(ξ) – НОМД), то в силу единственности НОМД t(ξ) =
Mθ(t(ξ) |T (ξ)) с вероятностью единица, и поэтому t(ξ) зависит от ξ
только через T (ξ).

2.6. Полные достаточные статистики
Ещё один способ построения НОМД может быть применён для

специального класса статистик, называемых полными.

Определение 8. Статистика T (ξ) называется полной, если всякая
функция от неё, имеющая при всех θ ∈ Θ нулевое математическое
ожидание, равна нулю с вероятностью единица (для любого θ ∈ Θ).

Если T (ξ) – полная статистика, то, во-первых, как любая ста-
тистика она является несмещённой оценкой своего математическо-
го ожидания Mθ T (ξ), а во-вторых, в силу полноты не существует
двух функций от T (ξ), несмещённо оценивающих Mθ T (ξ). В самом
деле, тогда разность этих функций есть функция от T (ξ), и её ма-
тематическое ожидание равно нулю, но для полных статистик T (ξ)
разность таких оценок равна нулю с вероятностью единица.

Всякая функция f(T (ξ)) от полной достаточной статистики яв-
ляется НОМД математического ожидания Mθ T (ξ) для всех θ ∈ Θ.
Действительно, как было показано выше, НОМД следует искать
в классе функций f(T (ξ)) от достаточной статистики. Поскольку
статистика f(T (ξ)) полная, не существует двух различных функ-
ций от f(T (ξ)), несмещённо оценивающих Mθ T (ξ).

Если существует полная достаточная статистика T (ξ) для па-
раметра θ ∈ Θ, то для получения НОМД значения τ(θ) можно
построить любую несмещённую оценку t(ξ), затем найти её услов-
ное математическое ожидание f(s) = Mθ(t(ξ) |T (ξ) = s). Тогда
функция f(s), s ∈ R, не зависит от θ и f(T (ξ)) – НОМД для τ(θ).

Рассмотрим пример использования полноты статистики для по-
лучения НОМД для разных функций τ(θ). В предыдущем разделе
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было показано, что в серии ξ1, . . . , ξn из n независимых испытаний
Бернулли для вероятности θ ∈ (0, 1) успеха в единичном испытании
достаточной статистикой является число успехов ξ = ξ1 + · · · + ξn.
Покажем, что T (ξ) = ξ является полной статистикой. Для этого
выберем произвольную статистику f(ξ), для которой Mθ f(ξ) = 0,
другими словами,

Mθ f(ξ) =
n∑

k=0

f(k)Ck
nθk(1 − θ)n−k = 0.

Это соотношение означает, что полином степени n от аргумента θ
равен нулю для всех θ ∈ (0, 1), что возможно только тогда, когда
все его коэффициенты равны нулю. Значит, ξ – полная достаточ-
ная статистика, и любая функция от нее является НОМД своего
математического ожидания. В частности, поскольку

Mθ
ξ

n
= θ, Mθ

ξ(ξ − 1)
n(n − 1)

= θ2, Mθ
ξ(n − ξ)
n(n − 1)

= θ(1 − θ),

получаем, что
ξ

n
,

ξ(ξ − 1)
n(n − 1)

,
ξ(n − ξ)
n(n − 1)

являются НОМД для θ, θ2 и θ(1 − θ) соответственно.

2.7. Эвристические методы построения оценок
Опишем два способа построения точечных оценок, которые ос-

нованы на неформальных соображениях, но тем не менее в ряде
случаев обладают полезными свойствами.

Оценки максимального правдоподобия
Пусть ξ = (ξ1, . . . , ξn) – выборка объема n из абсолютно непре-

рывного распределения с плотностью p( · ; θ), θ ∈ Θ. Функция прав-
доподобия такой выборки равна

L(x, θ) =
n∏

k=1

p(xk; θ), θ ∈ Θ, x = (x1, . . . , xn) ∈ Rn. (2.26)

Тогда

L(x, θ) dx = Pθ(x1 6 ξ1 < x1 + dx1, . . . xn 6 ξn < xn + dxn).
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При фиксированном x ∈ Rn эта вероятность зависит от θ ∈ Θ, и ве-
личина L(x, θ) определяет, насколько вероятно получить выборку
ξ = x для данного значения θ. Рассмотрим теперь с.в. L(ξ, θ), кото-
рая зависит от случайной выборки. С учётом смысла реализаций
L(x, θ) этой с.в. разумно выбрать такое значение параметра θ, при
котором значение функции правдоподобия максимально при дан-
ном x. Другими словами, необходимо решить следующую задачу:
требуется найти

max
θ∈Θ

L(x, θ) = L(x, θ̂(x)). (2.27)

Подставляя вместо x с.в. ξ, получаем оценку θ̂(ξ), к которой (ес-
ли она является статистикой) применимы все понятия и методы
анализа из предыдущих разделов.

Определение 9. Оценка θ̂(ξ), доставляющая максимум в (2.27),
называется оценкой максимального правдоподобия (ОМП) для па-
раметра θ ∈ Θ.

Таким образом, принцип максимального правдоподобия состо-
ит в том, что в качестве значения неизвестного параметра пред-
лагается использовать ОМП, т. е. такое значение параметра, при
котором максимальна вероятность получить в результате наблю-
дений имеющуюся реализацию выборки.

Если требуется найти ОМП параметра дискретного распределе-
ния, то в функции правдоподобия (2.26) следует заменить значение
плотности p(xk; θ) на Pθ(ξk = xk).

Если функция правдоподобия дифференцируема по параметру
и максимум достигается во внутренней точке множества Θ, то для
достижения максимума в (2.27) необходимо равенство нулю произ-
водной L(x, θ) по θ. В ряде случаев удобнее искать максимум лога-
рифма функции правдоподобия; в силу монотонности логарифма
мы получим ту же точку максимума θ̂. Необходимое условие мак-
симума принимает вид

∂ ln L(x, θ)
∂θ

∣∣∣∣
θ=θ̂(x)

= 0. (2.28)

Это уравнение называется уравнением максимального правдопо-
добия. Если в точке максимума функция правдоподобия L(x, θ) не
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дифференцируема по θ, то ОМП θ̂ тем не менее может существо-
вать, но воспользоваться уравнением максимального правдоподо-
бия уже не удастся. Наконец, если максимум в (2.27) не достигает-
ся, то ОМП для θ не существует.

Если θ = (θ1, . . . , θm) ∈ Rm и m > 1, то уравнение максималь-
ного правдоподобия (2.28) записывается как система уравнений

∂ ln L(x, θj)
∂θj

= 0, j = 1, . . . , m.

Её решение θ̂(x) = (θ̂1(x), . . . , θ̂m(x)) даёт ОМП.
Отметим, что если существует эффективная оценка t(ξ) число-

вого параметра θ, то она может быть найдена как ОМП. Действи-
тельно, условие эффективности оценки записывается как

∂ ln L(x, θ)
∂θ

= a(θ)(t(x) − θ), x ∈ R. (2.29)

Пусть для каждого x ∈ R значение θ̂(x) определяется условием

∂ ln L(x, θ)
∂θ

∣∣∣∣
θ=θ̂(x)

= 0,

тогда t(x) − θ̂(x) = 0 для всех x ∈ R (при условии a(θ) 6= 0 для
всех θ ∈ Θ). Это означает, что эффективная оценка t(ξ) = θ̂(ξ)
с вероятностью единица.

Второе полезное свойство ОМП состоит в том, что если суще-
ствует достаточная статистика T (ξ) для θ, то ОМП является функ-
цией от этой статистики. Действительно, согласно теореме 4 тогда
L(x, θ) = g(T (x), θ)h(x), следовательно, ОМП доставляет макси-
мум по θ функции g(T (x), θ), зависящий от x только через T (x).

Кроме того, ОМП при определенных условиях обладают рядом
других полезных свойств, проявляющихся при большом объеме вы-
борки (состоятельность, асимптотическая нормальность).

Пример 10. Пусть ξ = (ξ1, . . . , ξn) – выборка объема n из распре-
деления N(µ, σ2) и θ = (µ, σ2) – двумерный параметр. Построим
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для него ОМП. Имеем

ln L(x, µ, σ2) =
n∑
i=

ln
(

1√
2πσ2

e−(xi−µ)2/2σ2

)
=

= −n

2
ln(2π) − n

2
ln σ2 − 1

2σ2

n∑
i=1

(xi − µ)2.

Система уравнений максимального правдоподобия имеет вид

∂ ln L(x, µ, σ2)
∂µ

=
1
σ2

n∑
i=1

(xi − µ) = 0,

∂ ln L(x, µ, σ2)
∂σ2

= − n

2σ2
+

1
2σ4

n∑
i=1

(xi − µ)2 = 0,

откуда следует ОМП для (µ, σ2):

µ̂ = ξ̄ =
1
n

n∑
i=1

xi, σ̂2 =
1
n

n∑
i=1

(xi − ξ̄ )2.

Заметим, что при неизвестном µ ОМП для σ2 не обладает свой-
ством несмещённости, однако и µ̂, и σ̂2 являются состоятельными
оценками.

Пример 11. Построим ОМП для параметра θ равномерного на
[0, θ] распределения с.в. по выборке объема n = 1. В этом случае

L(ξ, θ) =

{
1/θ, θ > ξ,

0, θ < ξ,

максимум функции правдоподобия достигается в точке θ = ξ, где
функция правдоподобия терпит разрыв, но мы тем не менее имеем
ОМП θ̂(ξ) = ξ для θ.

Метод моментов
Пусть ξ = (ξ1, . . . , ξn) – выборка объема n из распределения,

зависящего от неизвестного параметра θ ∈ Θ. Рассмотрим некото-
рую функцию f( · ) : R → R, такую что f(ξk) (здесь k = 1, . . . , n
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любое, но фиксированное) является с.в. и имеет конечное мате-
матическое ожидание Mθ f(ξk). Все составляющие выборки имеют
одно и то же распределение, поэтому Mθ f(ξk) не зависит от k,
но, конечно, зависит от неизвестного параметра: Mθ f(ξk) = g(θ).
Рассмотрим это равенство как уравнение относительно θ, и пусть
оно разрешимо единственным образом. Обозначим его решение как
g(−1)(Mθ f(ξk)). Заменяя математическое ожидание с.в. f(ξk) его
выборочным значением 1

n

∑n
k=1 f(ξk), получим оценку параметра θ

методом моментов:

θ̃ = g(−1)

(
1
n

n∑
k=1

f(ξk)
)

.

Функцию f( · ) называют пробной. Чаще всего в качестве пробной
функции выбирают степенную функцию f(ξk) = ξr

k (если суще-
ствует Mθ ξr

k).
Положительным свойством метода моментов является его со-

стоятельность. Если Mθ f(ξk) = g(θ) и для последовательности с.в.
f(ξk), k = 1, 2, . . . , выполнены условия закона больших чисел,

1
n

n∑
k=1

f(ξk)
P−→

n→∞
g(θ),

то в случае непрерывности функции g(−1)( · ) по свойству 1, дока-
занному в разделе 1.1, оценка θ̃ метода моментов является состоя-
тельной:

θ̃ = g(−1)

(
1
n

n∑
i=1

f(ξi)
)

P−→
n→∞

g(−1)(Mθ f(ξ)) = g(−1)(g(θ)) = θ.

Если θ = (θ1, . . . , θm) с m > 1, то в качестве пробной берут
вектор-функцию f(x) : R → Rm со значениями (f1(x), . . . , fm(x))
для x ∈ R. Тогда, найдя математические ожидания каждой fi(ξk),
мы получаем для θ ∈ Θ ⊆ Rm набор равенств

Mθ fi(ξk) = gi(θ), i = 1, . . . , m

(напомним, что математическое ожидание не зависит от k). Далее
подставляем вместо Mθ fi(ξk) их выборочные значения fi(ξ). Полу-
чаем систему уравнений

fi(ξ) = gi(θ), i = 1, . . . , m,



54 ГЛАВА 2. ТОЧЕЧНЫЕ ОЦЕНКИ ПАРАМЕТРОВ

с известными функциями gi( · ) на Θ. Она должна иметь единствен-
ное решение θ̃i(ξ), i = 1, . . . , m. Это решение даёт многомерную
оценку для θ методом моментов.

Пример 12. Пусть ξ = (ξ1, . . . , ξn) – выборка объема n из рав-
номерного на отрезке [0, θ] распределения. Найдём оценку пара-
метра θ методом моментов, выбрав пробную функцию f(ξ1) = ξ1.
Поскольку Mθ ξ1 = θ/2, мы можем записать θ = 2 Mθ ξ1, и, за-
меняя математическое ожидание выборочным средним, получаем,
что оценка методом моментов равна

θ̃ =
2
n

n∑
k=1

ξk.

Если в качестве пробной функции f( · ) взять r-й момент с.в. ξ1, то
в силу того, что

Mθ ξr
1 =

∫ θ

0

zr

θ
dz =

θr

r + 1
,

мы имеем

θ̃ = r

√√√√r + 1
n

n∑
k=1

ξr
k.

Пример 13. Пусть ξ = (ξ1, . . . , ξn) – выборка объема n из нор-
мального распределения N(µ, σ2). Найдём оценку двумерного па-
раметра θ = (µ, σ2) методом моментов. Выберем пробную функцию
f(ξ1) = (ξ1, ξ

2
1). Имеем

Mθξ1 = µ, Mθξ
2
1 = µ2 + σ2,

откуда, заменяя Mθξ1, Mθξ
2
1 на соответственно ξ̄, ξ2, получаем оцен-

ки методом моментов

µ̃ = ξ̄, σ̃2 = ξ2 − (ξ̄ )2.

Далее мы перейдём к задачам интервального оценивания пара-
метров распределений с.в.



3. Интервальные оценки параметров
распределений

3.1. Интервальные оценки параметров
распределений случайных величин

Точечные оценки параметров распределений, даже если они об-
ладают какими-либо полезными свойствами, имеют один недоста-
ток: при конечном размере выборки в общем случае значение то-
чечной оценки совпадает с оцениваемой величиной с вероятностью
ноль. Другими словами, если t(ξ) – точечная оценка для θ, то мы
не можем утверждать, что t(x) = θ практически ни для какой ре-
ализации ξ = x. Причина этого в том, что t(ξ) – случайная точка
в пространстве параметров (потому оценка называется точечной),
и вероятность того, что она «упадёт» в точности в точку θ, в общем
случае равна нулю. Справиться с этой проблемой можно, заменив
точечную оценку t(ξ) на некое множество Θ̂(ξ), границы которого
определяются выборкой, такое что вероятность Pθ(Θ̂(ξ) 3 θ) доста-
точно велика для всех θ ∈ Θ.

Далее мы рассмотрим случай одномерного параметра θ, тогда
в качестве множества Θ̂(ξ) на прямой естественно выбрать интер-
вал (t1(ξ), t2(ξ)). Данный случайный интервал содержит истинное
значение параметра θ с вероятностью

Pθ(t1(ξ) < θ < t2(ξ)) = Pθ(t1(ξ) < θ, t2(ξ) > θ).

Нам требуется, чтобы эта вероятность была достаточно велика для
всех θ ∈ Θ. Чтобы не анализировать поведение вероятности в за-
висимости от θ, потребуем, чтобы она вовсе не зависела от θ. Мы
приходим к следующему определению.

Определение 1. Интервальной оценкой (или доверительным ин-
тервалом) для одномерного параметра θ называется случайный
интервал (t1(ξ), t2(ξ)), такой что вероятность

γ = Pθ(t1(ξ) < θ < t2(ξ)) (3.1)

55
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не зависит от θ ∈ Θ. Величина γ называется уровнем доверия ин-
тервальной оценки.

Границы интервальной оценки представляют собой некоторые
функции от выборки (статистики). Интервальная оценка тем луч-
ше, чем выше уровень доверия. Случайная величина t2(ξ) − t1(ξ)
равна длине интервала, и понятно, что желательно, чтобы её рас-
пределение было сосредоточено в области малых значений – тогда
мы можем говорить о высокой точности оценивания. Очевидно,
что в общем случае чем выше уровень доверия, тем ниже точность
оценивания (длинным интервалом легче накрыть точку, чем ко-
ротким).

Найти статистики t1(ξ), t2(ξ), для которых вероятность (3.1) не
зависит от θ, – это сложная задача. Однако можно попробовать
свести эту задачу к более простой. А именно, если нам удастся
найти функцию T (x; θ), x ∈ Rn, θ ∈ Θ, такую что

• распределение с.в. T (ξ; θ) известно и не зависит от θ ∈ Θ;
• неравенство a1 < (ξ; θ) < a2, выполненное с вероятностью γ,
можно решить относительно θ как t1(ξ) < θ < t2(ξ),

то случайный интервал (t1(ξ), t2(ξ)) удовлетворяет условию (3.1).
Этот подход используется при построении самых известных ин-

тервальных оценок – оценок параметров нормального распределе-
ния.

3.2. Интервальные оценки параметров
нормального распределения

Пусть ξ = (ξ1, . . . , ξn) – выборка из распределения N(µ, σ2). По-
строение интервальных оценок параметров нормального распреде-
ления основано на следующих определениях и свойствах этого рас-
пределения, известных из теории вероятностей.

Определение 2. Мы говорим, что с.в. χ2
n имеет распределение хи-

квадрат с n степенями свободы (или, иначе, распределение Пирсо-
на), и мы пишем χ2

n ∼ X2
n, если

χ2
n =

n∑
k=1

ξ2
k,

где ξk, k = 1, . . . , n, имеют распределение N(0, 1) и независимы.
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Определение 3. Мы говорим, что с.в. τn имеет распределение
Стьюдента с n степенями свободы (или, иначе, T-распределение),
и мы пишем τn ∼ Tn, если

τn =
ξ0√

1
n

∑n
k=1 ξ2

k

, ξk ∼ N(0, 1), k = 0, 1, . . . , n,

где ξk, k = 0, 1, . . . , n, независимы. Альтернативное определение
связано с распределением хи-квадрат:

τn =
ξ0√
1
nχ2

n

∼ Tn, если ξ0 ∼ N(0, 1), χ2
n ∼ X2

n

и ξ0, χ2
n независимы.

Следующие свойства показывают, что определённые комбина-
ции нормальных с.в. имеют упомянутые распределения.

Свойство N1. Если с.в. ξk ∼ N(µk, σ
2
k), k = 1, . . . , n, независимы,

то
1√
n

n∑
k=1

ξk − µk√
σ2

k

∼ N(0, 1).

В частности, если µk = µ и σ2
k = σ2 для всех k = 1, . . . , n, то

1√
n

n∑
k=1

ξk − µ√
σ2

=
√

n

σ2
(ξ̄ − µ) ∼ N(0, 1).

Свойство N2. Если с.в. ξk ∼ N(µk, σ
2
k), k = 1, . . . , n, независимы,

то для любых постоянных b, a1, . . . , an

a1ξ1 + · · · + anξn + b ∼ N(µ, σ2),

{
µ = a1µ1 + · · · + anµn + b,

σ2 = a2
1σ

2
1 + · · · + a2

nσ2
n.

Свойство N3. Если с.в. ξk ∼ N(µ, σ2), k = 1, . . . , n, независимы,
то

1
σ2

n∑
k=1

(ξk − µ)2 ∼ X2
n.
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Свойство N4. Если с.в. ξk ∼ N(µ, σ2), k = 1, . . . , n, независимы,
то

1
σ2

n∑
k=1

(ξk − ξ̄ )2 ∼ X2
n−1.

Свойство N5. Если с.в. ξk ∼ N(µ, σ2), k = 1, . . . , n, независимы,
то

1√
n
(ξ̄ − µ)√

1
n−1

∑n
j=1(ξj − ξ̄ )2

∼ Tn−1.

Эти свойства лежат в основе интервальных оценок параметров
нормального распределения.

Интервальная оценка математического ожидания
при известной дисперсии

Пусть ξ = (ξ1, . . . , ξn) – выборка из распределения N(µ, σ2).
Построим случайный интервал, накрывающий значение математи-
ческого ожидания µ. В качестве функции T (ξ; µ), распределение
которой не зависит от оцениваемого параметра1), выберем

T (ξ; µ) =
√

n

σ2
(ξ̄ − µ).

Согласно свойству N1 имеем T (ξ; µ) ∼ N(0, 1). Тогда

P (b1 < T (ξ; µ) < b2) = Φ(b1) − Φ(−b2) =
∫ b2

b1

1√
2π

e−x2/2 dx,

Таким образом, если мы выберем b1 < b2 так, чтобы выполнялось
равенство Φ(b1) − Φ(−b2) = γ, то

γ = P

(
b1 <

√
n

σ2
(ξ̄−µ) < b2

)
= P

(
ξ̄−

√
σ2

n
b2 < µ < ξ̄−

√
σ2

n
b1

)
.

Уравнение Φ(b1)−Φ(−b2) = γ имеет бесконечно много решений
b1 < b2; чтобы выделить одно, наложим дополнительное условие
b1 = −b2. Другими словами, будем решать относительно b > 0
уравнение

P (−b < T (ξ; µ) < b) = Φ(b) − Φ(−b) = γ. (3.2)
1)Cм. идею построения интервальных оценок в конце предыдущего раздела.
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Тогда для любого γ ∈ (0, 1) существует единственное b = bγ > 0,
являющееся корнем уравнения (3.2). В результате интервальную
оценку для µ при известной σ2 с уровнем доверия γ ∈ (0, 1) можно
построить следующим образом. По заданному γ находим b = bγ ,
решив уравнение

Φ(b) − Φ(−b) =
∫ b

−b

1√
2π

e−x2/2 dx = γ, (3.3)

тогда

P

(
ξ̄ −

√
σ2

n
bγ < µ < ξ̄ +

√
σ2

n
bγ

)
= γ. (3.4)

Численные границы интервальной оценки находятся после подста-
новки вместо ξ̄ выборочного среднего x̄ полученных в эксперимен-
те данных. При решении уравнения (3.3) полезно иметь в виду
очевидные равенства, вытекающие из чётности подынтегральной
функции:

Φ(−b) = 1 − Φ(b) =
1 − γ

2
.

Замечание 1. В оценке (3.4) центр интервала, накрывающего ис-
тинное значение µ, совпадает с выборочным средним, границы ин-
тервала суть

t1(ξ) = ξ̄ −
√

σ2

n
bγ , t2(ξ) = ξ̄ +

√
σ2

n
bγ ,

длина интервала неслучайна и равна

t2(ξ) − t1(ξ) = 2

√
σ2

n
bγ ,

так как не зависит от выборки. Можно показать, что среди всех
пар чисел (b1, b2), удовлетворяющих условию Φ(b1) − Φ(−b2) = γ,
пара b1 = −bγ , b2 = bγ даёт минимальную длину доверительного
интервала для фиксированного γ.

Замечание 2. Видно, что в (3.4) длина интервала уменьшается
с уменьшением σ2 и с ростом n, стремясь к нулю при n → ∞.
Как результат, точность интервальной оценки естественным обра-
зом увеличивается с уменьшением дисперсии составляющих выбор-
ки и с ростом объёма выборки. При n → ∞ интервал стягивается
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в точку, совпадающую с точечной оценкой ξ̄ параметра µ. Кроме
того, чем больше γ, тем больше bγ . Таким образом, попытка увели-
чить уровень доверия оценки неизбежно приводит к уменьшению
её точности.

Замечание 3. Построенная нами интервальная оценка, конечно,
не является единственно возможной. Также нельзя утверждать,
что она оптимальна с какой-либо точки зрения. Например, хотя
в замечании 1 мы сказали, что оценка (3.4) имеет минимальную
длину, это относится только к оценкам, построенным на основе вы-
бранной нами функции T (ξ; µ) =

√
n/σ2(ξ̄−µ). Возможно, оценки,

построенные при других функциях T (ξ; µ), будут более точными.
Преимуществами оценки (3.4) является простота её построения,
в частности простота решения неравенства b1 < T (ξ; µ) < b2 от-
носительно µ. Также в общем случае не являются оптимальными
и другие интервальные оценкам, построенные в этом и следующих
разделах.

Интервальная оценка дисперсии
при известном математического ожидании

Теперь нам нужно выбрать функцию T (ξ; σ2), распределение
которой не зависит от σ2. Для этого воспользуемся свойством N3
и рассмотрим функцию

χ2
n(ξ; σ2) = χ2

n =
1
σ2

n∑
k=1

(ξk − µ)2 ∼ X2
n.

По заданному γ ∈ (0, 1) найдём 0 < c
(n)
γ,1 < c

(n)
γ,2 как корни уравнения

P (c(n)
1 < χ2

n < c
(n)
2 ) = γ. (3.5)

Таких решений бесконечно много, чтобы выделить единственное,
наложим дополнительное условие

P (χ2
n < c

(n)
γ,1) = P (χ2

n > c
(n)
γ,2) =

1 − γ

2
. (3.6)

Тогда, решая неравенство c
(n)
γ,1 < χ2

n < c
(n)
γ,2 относительно σ2, полу-

чаем

P

(∑n
k=1(ξk − µ)2

c
(n)
γ,2

< σ2 <

∑n
k=1(ξk − µ)2

c
(n)
γ,1

)
= γ. (3.7)
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Формулы (3.5)–(3.7) задают интервальную оценку параметра σ2

при известном µ.
Условие (3.6) говорит о том, что наш доверительный интервал

«промахивается», падая левее и правее истинного значения пара-
метра σ2, с одинаковой вероятностью (1 − γ)/2. Можно было бы
воспользоваться подходом предыдущей задачи и найти самый ко-
роткий интервал (т. е. минимум разности 1

c
(n)
γ,1

− 1

c
(n)
γ,2

при фиксирован-

ном γ. Эту вариационную задачу можно решить, но не так легко,
как удовлетворить условие (3.6)

Мы построили интервальные оценки одного из параметров нор-
мального распределения, считая, что нам известно значение друго-
го параметра. Едва ли можно ожидать, что на практике мы столк-
нёмся с подобной ситуацией. Скорее всего неизвестны значения
обоих параметров, но вполне возможно, что исследователя инте-
ресует оценка только для одного из них, например для среднего
(математического ожидания). Это усложняет алгоритм оценива-
ния: искомая оценка должна строиться так, чтобы все необходимые
вероятности можно было найти, не зная «лишний» параметр (его
часто называют мешающим). Идея построения таких оценок для
параметров нормального распределения состоит в замене матема-
тического ожидания и дисперсии их выборочными значениями.

Интервальная оценка дисперсии
при неизвестном математического ожидании

В данном случае заменим неизвестное математическое ожида-
ние µ на выборочное среднее ξ̄. Согласно свойству N4 мы можем
выбрать в качестве T (ξ; σ2) функцию

χ2
n−1 =

1
σ2

n∑
k=1

(ξk − ξ̄ )2 ∼ X2
n−1.

В результате интервальная оценка дисперсии при неизвестном ма-
тематическом ожидании задаётся теми же формулами, что и выше,
с заменой n на n − 1:

P

(∑n
k=1(ξk − µ)2

c
(n−1)
2

6 σ2 6
∑n

k=1(ξk − µ)2

c
(n−1)
1

)
= γ, (3.8)
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где c
(n−1)
1 , c

(n−1)
2 определяются уравнениями

P (c(n−1)
1 < χ2

n−1 < c
(n−1)
2 ) = γ,

P (χ2
n−1 < c

(n−1)
γ,1 ) = P (χ2

n−1 > c
(n−1)
γ,2 ) =

1 − γ

2
.

(3.9)

Интервальная оценка математического ожидания
при неизвестной дисперсии

В данном случае заменим неизвестную σ2 на выборочную дис-
персию

σ̂2 =
1

n − 1

n∑
k=1

(ξk − ξ̄ )2.

Тогда согласно свойству N5 статистика

τn−1 =
1√
nσ̂2

(ξ̄ − µ) =
1√
n
(ξ̄ − µ)√

1
n−1

∑n
j=1(ξj − ξ̄ )2

(3.10)

имеет распределение Стьюдента Tn−1. Плотность вероятности для
этого распределения является чётной функцией, поэтому границы
интервальной оценки, как и в случае известной σ2, будем находить
из следующего уравнения относительно uγ :

P (−uγ < τn−1 < uγ) = γ, 0 < γ < 1. (3.11)

В результате имеем

P

(
ξ̄ −

√
σ̂2

n
uγ < µ < ξ̄ +

√
σ̂2

n
uγ

)
= γ. (3.12)

Мы видим очевидное сходство оценок (3.4) и (3.12) для соот-
ветственно известной и неизвестной σ2. Разница состоит в том, что
в оценке (3.12) вместо σ2 стоит с.в. σ̂2, которая в определённом
смысле приближает неизвестную дисперсию. Кроме того, решения
уравнений (3.2) и (3.11), определяющие границы интервала, выво-
дятся соответственно из стандартного нормального распределения
и распределения Стьюдента Tn−1.

Если сравнивать точности оценок (3.4) и (3.12) при фиксиро-
ванных n и γ, считая, что σ̂2 = σ2, то, как и следовало ожидать,
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при неизвестной дисперсии точность оценки ниже, чем в случае
известной. Это объясняется поведением решений уравнений (3.2)
и (3.11). Поскольку распределение Tn−1 шире стандартного нор-
мального, uγ в уравнении (3.2) больше, чем решение bγ уравне-
ния (3.11) при том же γ. Точность интервальной оценки (3.12) ана-
логично оценке (3.4) растёт с ростом n и падает с ростом σ̂2 или γ
(см. замечание 2).

3.3. Другие интервальные оценки.
Асимптотические интервальные оценки

Рассмотрим интервальные оценки для других распределений.

Пример 1. Дана выборка ξ объёма 1 из экспоненциального рас-
пределения E(θ), θ > 0, т. е. её плотность имеет вид p(x) = θe−θx

при x > 0, p(x) = 0 при x < 0. Построим интервальную оценку
параметра θ с уровнем доверия γ.

Выберем с.в. T (ξ; θ) = ξθ. Ее функция распределения не зави-
сит от неизвестного параметра θ:

FT (z) = P (ξθ < z) =
∫ z/θ

0
θe−θx dx = 1 − e−z, z > 0. (3.13)

Для 0 < γ < 1 и 0 6 β < 1 − γ найдём ε1 и ε2 из уравнений

P (ξθ 6 ε1) = 1 − e−ε1 = β, P (ξθ > ε2) = e−ε2 = 1 − γ − β,

тогда P (ε1 < ξθ < ε2) = γ или

P

(
ε1

ξ
< θ <

ε2

ξ

)
= γ.

Из (3.13) следует, что

ε1 = − ln(1 − β), ε2 = − ln(1 − γ − β).

Интервальная оценка тем точнее, чем меньше длина оценивающего
интервала при заданном уровне доверия. В нашем случае длина
оценивающего интервала есть

ε2 − ε1

ξ
=

ln(1 − β) − ln(1 − γ − β)
ξ

,
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и это с.в. Но тем не менее мы можем сказать, что наибольшая
точность оценивания достигается при β = 0, так как при фиксиро-
ванном ξ длина монотонно возрастает на интервале β ∈ [0, 1 − γ),
поскольку

∂

∂β

(
ln(1 − β) − ln(1 − γ − β)

)
=

γ

(1 − β)(1 − γ − β)
> 0.

Итак, искомая оценка имеет вид

P

(
0 < θ < − ln(1 − γ)

ξ

)
= γ.

Пример 2. Пусть теперь дана выборка ξ = (ξ1, . . . , ξn) объема n из
того же экспоненциального распределения, и, как и в предыдущей
задаче, требуется построить интервальную оценку параметра θ с
уровнем доверия γ.

В этом случае в качестве T (ξ; θ) можно выбрать функцию

θξ(n) = θ · max
16k6n

ξk

c не зависящей от θ функцией распределения

FT (z) = P (ξ(n)θ < z) = (1 − e−z)n, z > 0.

Тогда из уравнения P (0 < θξ(n) < ε) = (1 − e−ε)n = γ находим
ε = ln(1 − n

√
γ ) и получаем искомую интервальную оценку

P

(
0 < θ < −

ln(1 − n
√

γ )
ξ(n)

)
= γ.

Если в качестве T (ξ; θ) выбрать функцию

θξ(1) = θ · min
16k6n

ξk,

то её функция распределения

FT (z) = P (ξ(n)θ < z) = 1 − e−zn, z > 0,

также не зависит от θ. Тогда, действуя так же, как выше получаем

P (0 < ξ(1)θ < ε) = 1 − e−εn = γ, ε = − ln(1 − γ)
n

.

В результате имеем интервальную оценку

P

(
0 < θ < − ln(1 − γ)

nξ(1)

)
= γ.
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Пример 3. Пусть теперь ξ = (ξ1, . . . , ξn) – выборка объема n из
равномерного распределения на отрезке [0, θ]. Требуется построить
интервальную оценку параметра θ > 0 с уровнем доверия γ.

Выберем в качестве T (ξ; θ) функцию ξ(n)/θ с не зависящей от θ
функцией распределения

FT (z) =


0, z 6 0,

zn, 0 < z 6 1,

1 z > 1.

Тогда, решая для 0 < γ < 1 уравнение

P

(
ε <

ξ(n)

θ
< 1

)
= 1 − εn = γ

относительно ε, получаем ε = n
√

1 − γ и далее, разрешая неравен-
ство под знаком вероятности относительно θ, выводим интерваль-
ную оценку с уровнем доверия γ:

P

(
ξ(n) < θ <

ξ(n)

n
√

1 − γ

)
= γ.

Асимптотические интервальные оценки
Как видно из приведенных выше примеров, интервальные оцен-

ки с заданным уровнем доверия можно построить с помощью раз-
личных функций T (ξ; θ), и не всегда выбор этой функции очеви-
ден. Интервальные оценки можно также строить, воспользовав-
шись предельными теоремами (центральной предельной теоремой,
законами больших чисел), так, чтобы вероятность накрыть ими па-
раметр распределения стремилась к γ при стремлении объёма вы-
борки к бесконечности. Такие интервальные оценки (доверитель-
ные интервалы) называются асимптотическими. Часто асимптоти-
ческие оценки оказываются более естественными, чем точные ин-
тервальные оценки.

Определение 4. Интервал
(
t̂1(ξ1, . . . , ξn), t̂2(ξ1, . . . , ξn)

)
со случай-

ными границами называется асимптотической оценкой параметра θ
с уровнем доверия γ, если для всех θ ∈ Θ

lim inf
n→∞

Pθ

(
t̂1(ξ1, . . . , ξn) < θ < t̂2(ξ1, . . . , ξn)

)
= γ.
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В этом определении используется нижний предел, так как по-
следовательность вероятностей может не иметь предела, но ниж-
ний предел ограниченной снизу (нулём) числовой последователь-
ности всегда существует.

Опишем общий метод построения асимптотических интерваль-
ных оценок.

Пусть ξ = (ξ1, . . . , ξn) – n-мерная выборка из распределения,
зависящего от параметра θ ∈ Θ. Для построения асимптотических
интервальных оценок параметра θ следует выполнить следующие
действия.

• Найти функцию T̂ (ξ1, . . . , ξn; θ), по распределению сходящую-
ся к с.в. η, которая имеет известную функцию распределения Fη( · ),
не зависящую параметра θ. Необходимо, чтобы при любой фикси-
рованной выборке (ξ1, . . . , ξn) функция T̂ (ξ1, . . . , ξn; θ) была обра-
тима по θ.

• Найти числа ε1 и ε2, для которых

lim inf
n→∞

P (ε1 < T̂ (ξ1, . . . , ξn; θ) < ε2) = P (ε1 < η < ε2) = γ.

• Разрешив неравенства ε1 < T̂ (ξ1, . . . , ξn; θ) < ε2 относитель-
но θ, получить асимптотически точный доверительный интервал.

Рассмотрим для примера построение асимптотической оценки
параметра θ показательного распределения по заданной выборке
ξ1, . . . , ξn объема n. Математическое ожидание этого распределе-
ния равно 1/θ, дисперсия равна 1/θ2. Согласно центральной пре-
дельной теореме последовательность с.в.

1√
n/θ2

n∑
k=1

(ξk − n/θ) =
√

n
ξ̄ − 1/θ

1/θ
=

√
n(θξ̄ − 1), n = 1, 2 . . . ,

сходится по распределению к с.в. η ∼ N(0, 1). Тогда при n → ∞

P (−ε <
√

n(θξ̄ − 1) < ε) → P (−ε < η < ε) = Φ(ε) − Φ(−ε).

Для заданного γ ∈ (0, 1) найдём значение ε = εγ как корень урав-
нения Φ(ε) − Φ(−ε) = γ. Тогда

P

(
1
ξ̄
− εγ√

nξ̄
< θ <

1
ξ̄

+
εγ√
nξ̄

)
=

= P

(
n∑n

k=1 ξk
−

√
nεγ∑n

k=1 ξk
< θ <

n∑n
k=1 ξk

+
√

nεγ∑n
k=1 ξk

)
−→
n→∞

γ.
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Для построения асимптотических интервальных оценок часто
бывают полезны предложения 1 и 2 из раздела 1.1.

Для примера, пользуясь указанными утверждениями, построим
асимптотическую интервальную оценку параметра распределения
Пуассона λ по выборке ξ1, . . . , ξn объема n.

В силу центральной предельной теоремы последовательность

n∑
i=1

(ξi − λ)
√

nλ
=

√
n

ξ̄ − λ√
λ

, n = 1, 2, . . . ,

сходится по распределению к η ∼ N(0, 1). Из этого следует, что при
n → ∞

P

(
−ε <

√
n

ξ̄ − λ√
λ

< ε

)
−→
n→∞

P (−ε < η < ε) = Φ(ε) − Φ(−ε).

Выбираем ε как корень уравнения Φ(ε) − Φ(−ε) = γ. Однако мы
имеем квадратичное неравенство −ε <

√
n ξ̄−λ√

λ
< ε относительно λ,

решение которого весьма громоздкое. Но если заменить в знамена-
теле дроби

√
λ на

√
ξ̄, то неравенства легко разрешаются.

В данном случае ξ̄
P−→λ с ростом объёма n выборки, функ-

ция
√

λ/x непрерывна в x = λ, значит,
√

λ/ξ̄
P−→ 1 при n → ∞.

Далее, √
λn

ξ̄

ξ̄ − λ√
λ

=
√

n
ξ̄ − λ√

ξ̄

d−→
n→∞

η ∼ N(0, 1).

Поэтому

P

(
−ε <

√
n

ξ̄ − λ√
ξ̄

< ε

)
−→
n→∞

P (−ε < η < ε) = γ.

Решаем неравенство под знаком вероятности относительно λ и по-
лучаем асимптотическую интервальную оценку:

P

(
ξ̄ − ε

√
ξ̄

n
6 λ 6 ξ̄ + ε

√
ξ̄

n

)
−→
n→∞

γ.



4. Линейная регрессия
На практике часто встречаются задачи, в которых интересу-

ющие исследователя параметры не могут наблюдаться непосред-
ственно, измеряться может только некоторая известная функция
этих параметров, причём измерения производятся со случайной
погрешностью. Задача, состоящая в оценке этих параметров по ре-
зультату измерения значений этой функции и математической мо-
дели погрешности, называется задачей регрессии. Как параметры,
так и результаты измерений в этом разделе считаются векторны-
ми величинами, принадлежащими вещественным евклидовым про-
странствам конечной размерности. Наиболее изучены задачи ли-
нейной регрессии, в которой связь между неизвестными парамет-
рами и наблюдаемой функцией даётся линейным преобразованием
параметров.

Для нахождения оценок параметров нам потребуются допол-
нительные сведения из линейной алгебры и теории вероятностей,
связанные с линейными преобразованиями случайных векторов.

Линейные операторы в евклидовых пространствах

Вещественное евклидово пространство Rn размерности n – это
множество упорядоченных наборов x = 〈x1, . . . , xn〉, где xk ∈ R для
всех k = 1, . . . , n. Элементы пространства называются векторами.
По сути элемент x ∈ Rn полностью тождествен вектор-столбцу.
Элемент 〈0, . . . , 0〉 (столбец из нулей) называется нулевым элемен-
том пространства, и мы будем обозначать его как 0, т. е. так же,
как и число ноль. Это не должно приводить к недоразумениям,
поскольку по смыслу формулы должно быть понятно, какова при-
рода символа 0.

Линейные операции для x = 〈x1, . . . , xn〉 и z = 〈z1, . . . , zn〉 вво-
дятся поэлементно:

ax + bz = 〈ax1 + bz1, . . . , axn + bzn〉, a, b ∈ R,

68
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скалярное произведение и норма задаются как

(x, z) = x1z1 + · · · + xnzn, ‖x‖ =
√

(x, x) =
√

x2
1 + · · · + x2

n.

В любом n-мерном евклидовом пространстве существует ор-
тонормированный базис (кратко ОНБ, мы иногда называем его
просто базис), т. е. набор элементов e1, . . . , en ∈ Rn, таких что
(ek, ej) = δkj , где δkj = 1 при k = j и δkj = 0 при k 6= j (символ
Кронекера). Далее мы обозначаем такой базис как {ek}, не указы-
вая его размерность. Любой вектор x ∈ Rn можно разложить по
ОНБ {ek} по формуле:

x =
n∑

k=1

(x, ek)ek =⇒ ‖x‖2 =
n∑

k=1

(x, ek)2. (4.1)

Числа (x, ek), k = 1, . . . , n, называются координатами вектора x
в базисе {ek}. Для любых векторов x, y ∈ Rn

(x, z) =
n∑

k=1

(x, ek)(z, ek).

Простейшим примером ОНБ (назовём такой базис естественным)
является набор элементов

ek = 〈 0, . . . , 0, 1︸ ︷︷ ︸
k

, 0, . . . , 0〉, k = 1, . . . , n. (4.2)

Координаты элемента x = 〈x1, . . . , xn〉 в этом базисе совпадают
с теми числами, которые образуют набор x, т. е. xk = (x, ek) для
всех k = 1, . . . , n. В Rn существует бесконечно много ОНБ, более
того, любую ортонормированную систему e1, . . . , er с 1 6 r < n все-
гда можно дополнить элементами er+1, . . . , en до ОНБ всего про-
странства Rn.

Линейное подпространство в Rn – это множество L, в кото-
ром для любых x, y ∈ L и любых чисел a, b ∈ R элемент ax + by
принадлежит L. В линейном подпространстве можно ввести ОНБ
e1, . . . , er из элементов, принадлежащих L. При этом r = dimL
и 0 < r < n. В случае r = n мы имеем L = Rn; можно также взять
r = 0, тогда L = {0}, т. е. L содержит только нулевой элемент.
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Для любого x ∈ L справедливы формулы (4.1), в которых верхний
индекс суммы нужно заменить на r. Множество

L⊥ = {x ∈ Rn : (x, z) = 0 для всех z ∈ L}

называется ортогональным дополнением к L. Ортогональное до-
полнение является линейным подпространством, в нём можно вве-
сти ОНБ, и dimL + dimL⊥ = dimRn.

Любой x ∈ Rn можно единственным образом разложить как
x = x

a
+ x⊥, где x

a ∈ L, x⊥ ∈ L⊥. Это называется разложением
пространства в прямую сумму подпространств: Rn = L ⊕ L⊥. Это
разложение линейно в том смысле, что для любых a, b ∈ R

(ax + bz)
a
= ax

a
+ bz

a
, (ax + bz)⊥ = ax⊥ + bz⊥,

если выполнены разложения ax + bz = (ax + bz)
a

+ (ax + bz)⊥

и x = x
a
+ x⊥, z = z

a
+ z⊥.

Пусть Rm и Rn – два евклидовых пространства. Линейным опе-
ратором A, действующим из Rm в Rn, называется соответствие, ко-
торое сопоставляет любому x ∈ Rm единственный вектор y ∈ Rn

так, что A(ax+bz) = aAx+bAz для любых x, z ∈ Rm и любых чисел
a, b ∈ R. Мы обозначаем такое соответствие как A : Rm → Rn.

Если ввести в Rm и в Rn ОНБ {ej} и {ẽj} соответственно, то с
линейным оператором A можно связать набор чисел Aij = (ẽi, Aej),
i = 1, . . . , n, j = 1, . . . , m. Эти числа являются элементами мат-
рицы оператора. Верно и обратное: если задана матрица чисел
{Aij} c i = 1, . . . , n, j = 1, . . . , m, то можно задать линейный опе-
ратор, сопоставляющий элементу x = 〈x1, . . . , xm〉 ∈ Rm элемент
y = 〈y1, . . . , yn〉 ∈ Rn по правилу

yi =
m∑

j=1

Aijxj , i = 1, . . . , n.

При этом числа Aij , i = 1, . . . , n, j = 1, . . . , m, будут элементами
матрицы оператора, если в качестве базиса в Rm и Rn мы выберем
естественный ОНБ (4.2) соответствующей размерности. Далее мы
часто будем отождествлять понятие оператора (как соответствия)
и его матрицы (как таблицы чисел). При этом либо ортонормиро-
ванные базисы будут указаны явно, либо наши утверждения для
матриц будут справедливы при любом выборе базисов.
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Для любого линейного оператора A : Rm → Rn существует ли-
нейный оператор A∗ : Rn → Rm, называемый сопряжённым опера-
тором, такой что (Ax, y) = (x,A∗y) для любых x ∈ Rm, y ∈ Rm.
При любом выборе базисов матрица сопряжённого оператора явля-
ется транспонированной по отношению к матрице A, т. е. A∗

ij = Aji

для всех i = 1, . . . , n, j = 1, . . . , m. Понятно, что (A∗)∗ = A. Иногда
мы будем использовать верхний индекс T для обозначения транс-
понирования матрицы, но в силу нашего отождествления матрицы
и оператора по сути AT – это то же самое, что A∗. Для сопряжён-
ных операторов имеют место следующие хорошо известные равен-
ства:

(A∗)∗ = A, (A + B)∗ = A∗ + B∗, (AB)∗ = B∗A∗, (4.3)

которые доказываются, например, переходом к матричному пред-
ставлению операторов.

Простейшим примером линейного оператора является единич-
ный оператор I : Rn → Rn, действующий по правилу Ix = x для
любого x ∈ Rn. Матрица единичного оператора в любом ОНБ име-
ет вид I = diag(1, . . . , 1), т. е. все n её диагональных элементов рав-
ны 1, а остальные элементы равны 0. Ещё более простым является
нулевой оператор, который мы обозначаем символом O. Этот опе-
ратор действует по правилу Ox = 0 (нулевой вектор) для любого
x ∈ Rn. Все элементы матрицы нулевого оператора в любом ОНБ
равны 0. Очевидно, I = I∗, O = O∗.

Важным классом операторов являются ортогональные проек-
торы. Пусть L – линейное подпространство в Rn, L⊥ – его орто-
гональное дополнение. Тогда в силу единственности и линейности
разложения любого x ∈ Rn в сумму x = x

a
+ x⊥, где x

a ∈ L,
x⊥ ∈ L⊥, соответствие x 7→ x

a ∈ L задаёт линейный оператор.

Определение 1. Оператор Π: Rn → Rn, такой что Πx = x
a
, где

x = x
a
+ x⊥ – разложение вектора на x

a ∈ L, x⊥ ∈ L⊥, называется
ортогональным проектором на L.

1. Из единственности разложения элемента в сумму x = x
a
+x⊥

мы имеем Πx = x для любого x ∈ L (поскольку тогда x = x + 0) и
Πx = 0 для любого x ∈ L⊥ (поскольку тогда x = 0 + x).
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2. Оператор Π самосопряжён, Π = Π∗. Действительно, для лю-
бых x = x

a
+x⊥, z = z

a
+z⊥, поскольку (x

a
, z⊥) = 0 и (x⊥, z

a
) = 0,

(Πx, z) = (x
a
, z) = (x

a
, z

a
+ z⊥) = (x

a
+ x⊥, z

a
) = (x, Πz).

3. Имеет место равенство Π2 = Π: вследствие свойства 1

Πx = x
a
= Πx

a
= Π2x, x ∈ Rn.

Замечание 1. Очевидно, что если Π – ортогональный проектор
на L, то (I −Π) – ортогональный проектор на L⊥. При этом в силу
ортогональности слагаемых Πx и (I − Π)x для любого x ∈ Rn

‖x‖2 = ‖Πx‖2 + ‖(I − Π)x‖2.

Легко видеть, что если L – линейное подпространство размер-
ности r < n, проектор на которое равен Π, и ОНБ в Rn выбран так,
что e1, . . . , er – ОНБ в L, а er+1, . . . , en – ОНБ в L⊥, то Πek = ek

для k = 1, . . . , r и Πek = 0 для k = r+1, . . . , n. Поэтому для любого
x ∈ Rn

Πx = Π
n∑

k=1

(x, ek)ek =
r∑

k=1

(x, ek)ek.

На самом деле верно и обратное: если некоторый линейный опера-
тор Π действует на любой x ∈ Rn по указанному выше правилу, то
Π – ортогональный проектор.

Линейные преобразования случайных векторов
В этом разделе мы рассматриваем набор с.в. ξ1, . . . , ξn как слу-

чайный вектор ξ со значениями в n-мерном евклидовом простран-
стве Rn. Другими словами, любая реализация случайного векто-
ра ξ есть x = 〈x1, . . . , xn〉 ∈ Rn.

Математическое ожидание случайного вектора ξ зададим как
(неслучайный) вектор

Mξ = 〈Mξ1, . . . , Mξn〉 ∈ Rn.

Введём матрицу ковариаций этого вектора как матрицу Σ c эле-
ментами cov(ξi, ξj), i, j = 1, . . . , n. На диагонали этой матрицы, оче-
видно, стоят дисперсии элементов. C.в. ξ1, . . . , ξn можно рассмат-
ривать как координаты вектора ξ в естественном базисе. Другими
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словами, ξk = (ξ, ek), где {ek} задан в (4.2). В этом базисе эле-
менты матрицы ковариаций суть матричные элементы линейного
оператора Σ: Rn → Rn:

(Σei, ej) = M(ξ − Mξ, ei)(ξ − Mξ, ej) = cov(ξi, ξj), i, j = 1, . . . , n.

Абстрактное действие этого оператора на любой вектор x ∈ Rn

задаётся аналогичным равенством

(Σx, y) = M(ξ − Mξ, x)(ξ − Mξ, y), x, y ∈ Rn. (4.4)

Далее мы, как и выше, будем отождествлять оператор Σ и его мат-
рицу.

Очевидно, что если ξ и η – случайные векторы в Rn, a и b –
неслучайные числа, то

M(aξ + bη) = aMξ + bMη. (4.5)

Также понятно, что для любого ортонормированного базиса {ek}

M‖ξ − Mξ‖2 = M(ξ − Mξ, ξ − Mξ) = M
n∑

k=1

(ξ − Mξ, ek)2 =

=
n∑

k=1

M(ξ − Mξ, ek)(ξ − Mξ, ek) =
n∑

k=1

(Σek, ek),

где мы воспользовались определением (4.4). Величина в правой ча-
сти называется следом оператора Σ и обозначается как TrΣ. В мат-
ричном представлении TrΣ равен сумме диагональных элементов
матрицы ковариаций случайного вектора ξ, причём его значение
не зависит от выбора базиса, поскольку левая часть равенства

M‖ξ − Mξ‖2 = TrΣ (4.6)

не зависит от выбора базиса.
Пусть A : Rn → Rm есть линейный оператор. Рассмотрим слу-

чайный вектор Aξ со значениями в Rm. Введём в Rn и в Rm какие-
либо ортонормированные базисы {ek} и {ẽj} соответственно. Тогда
для любого j = 1, . . . , m

M(Aξ, ẽj) = M

(
A

n∑
k=1

(ξ, ek)ek, ẽj

)
= M

( n∑
k=1

(ξ, ek)(Aek, ẽj)
)

=

=
n∑

k=1

M(ξ, ek)(Aek, ẽj) =
n∑

k=1

(Aek, ẽj)M(ξ, ek).
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Мы получили поэлементную запись произведения матрицы A на
вектор Mξ. Таким образом, для линейного оператора A : Rn → Rm

MAξ = AMξ. (4.7)

В правой части этого равенства мы видим стандартное действие
линейного оператора A на неслучайный вектор Mξ. Кроме того,
для любого неслучайного вектора y ∈ Rm

M(y, Aξ) = M
m∑

j=1

(y, ẽj)(Aξ, ẽj) =
m∑

j=1

(y, ẽj)M(Aξ, ẽj),

следовательно,
M(y, Aξ) = (y, A Mξ), (4.8)

поскольку M(Aξ, ẽj) – это математическое ожидание j-й коорди-
наты вектора Aξ, которое по определению равно j-й координате
(MAξ, ẽj) вектора MAξ = AMξ.

Теперь положим Mξ = 0 (нулевой вектор) и найдём M‖Aξ‖2:

M‖Aξ‖2 = M

m∑
j=1

(Aξ, ẽj)(Aξ, ẽj) =
m∑

j=1

M(ξ, A∗ẽj)(ξ, A∗ẽj) =

=
m∑

j=1

(ΣA∗ẽj , A
∗ẽj) =

m∑
j=1

(AΣA∗ẽj , ẽj).

Отсюда получаем, что для вектора ξ с нулевым математическим
ожиданием

M‖Aξ‖2 = TrAΣA∗. (4.9)

Воспользуемся этим свойствами для построения оценок вектор-
ных параметров.

4.1. Задачи линейной регрессии
Пусть требуется оценить вектор параметров f = 〈f1, . . . , fm〉,

однако измерены, причём с ошибками, могут быть лишь линейные
комбинации его координат

ai1f1 + · · · + aimfm, i = 1, . . . , n,
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где число измеряемых параметров не меньше, чем число неизвест-
ных параметров, n > m. Результат ξi измерения каждой такой
линейной комбинации сопровождается случайной аддитивной по-
грешностью νi, так что

ξi = ai1f1 + · · · + aimfm + νi, i = 1, . . . , n; (4.10)

соотношение (4.10) называется линейной схемой измерения. Эту
схему можно записать в векторном виде, введя n-мерные векторы

ξ = 〈ξ1, . . . , ξn〉, ν = 〈ν1, . . . , νn〉 и aj = 〈a1j , . . . , anj〉

для j = 1, . . . , m. Тогда вектор ξ задаётся как линейная комбинация
векторов a1, . . . , am плюс вектор ν:

ξ = f1a1 + · · · + fmam + ν. (4.11)

Если считать aij , i = 1, . . . , n, j = 1, . . . , m, матричными элемен-
тами линейного оператора A : Rm → Rn и рассматривать f ∈ Rm

как вектор-столбец с элементами f1, . . . , fm, то мы приходим к ещё
одной записи линейной модели измерения:

ξ = Af + ν. (4.12)

Приведем примеры измерений, выполненных по схеме (4.10).

Пример 1. Пусть в заданные моменты времени t1, . . . , tn измеря-
ются координаты материальной точки, движущейся прямолинейно
и равноускоренно. Неизвестными параметрами являются началь-
ное положение x0, начальная скорость v0 и ускорение a. Измерение
координаты в каждый момент времени ti, i = 1, . . . , n, сопровож-
дается случайной погрешностью νi, такой что Mνi = 0, Dνi = σ2,
и погрешности измерений координаты в разные моменты времени
некоррелированы: Mνiνk = 0 при i 6= k для всех i, k = 1, . . . , n.
Поскольку закон равноускоренного движения имеет вид

S(t) = x0 + v0t +
at2

2
,

схему измерения можно записать в виде

ξi = x0 + v0ti +
at2i
2

+ νi, i = 1, . . . , n,
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или, положив f1 = x0, f2 = v0, f3 = a, – в виде (4.11):

ξ =
3∑

j=1

ajfj + ν,


a1 = 〈1, . . . 1〉
a2 = 〈t1, . . . , tn〉,
a3 = 〈t21/2, . . . , t2n/2〉,

при этом случайный вектор ν имеет нулевое математическое ожи-
дание и матрицу ковариаций σ2I.

Пример 2. Пусть измеряется энергетический спектр излучения
f(E), E > 0. Излучение со спектральным составом f(E) поступа-
ет на вход спектрометра с аппаратной функцией a(E, E′), выход-
ной сигнал спектрометра, измеряющего интенсивность излучения
с энергией E′

i, i = 1, . . . , n, даётся формулой

g(E′
i) =

∫ ∞

0
a(E′

i, E)f(E) dE. (4.13)

Измерение выходного сигнала спектрометра сопровождается адди-
тивной погрешностью, так что результат измерения можно запи-
сать в виде ξi = g(E′

i) + νi, i = 1, . . . , n. Записав интеграл в (4.13)
по формуле численного интегрирования в виде∫ ∞

0
a(E′

i, E)f(E) dE =
m∑

j=1

aijf(Ej) + ∆j ,

где Ej , j = 1, . . . , m – узлы сетки, ∆j – остаточный член, и выбрав
численный метод интегрирования так, чтобы ∆j был пренебрежи-
мо мал по сравнению с погрешностью измерения, получим схему
измерения в виде ξ = Af + ν, где матрица A имеет элементы aij ,
координаты вектора f ∈ Rm равны f(Ej), i = 1, . . . , n, j = 1, . . . , m.

Математическая модель линейной схемы измерений считается
заданной, если известны значения коэффициентов aij , i = 1, . . . , n,
j = 1, . . . , m, математические ожидания измерительных погрешно-
стей Mνi = 0, i = 1, . . . , n, и задана матрица ковариаций случайно-
го вектора ν: её матричные элементы определяются равенствами
Σik = cov(νi, νk) при i 6= k, Σii = Dνi, i, k = 1, . . . , n. Равенство
Mν = 0 оправданно, так как систематическая погрешность, как
правило, может быть учтена.
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Кроме того, далее для простоты будем считать, что погрешно-
сти измерений некоррелированы и имеют одинаковую дисперсию
Dνi = σ2. Тогда ковариационная матрица вектора погрешностей
имеет вид Σ = σ2I. Кроме того, будем считать, что коэффици-
енты aij , i = 1, . . . , n, j = 1, . . . , m, таковы, что столбцы aj матри-
цы A линейно независимы. Это, в частности, означает, что матрица
A∗A : Rm → Rm имеет обратную.

Задача линейной регрессии
Задача линейной регрессии для нашей модели состоит в следу-

ющем. Рассмотрим класс линейных оценок, т. е. оценок вида f̂ =
Rξ, где R – линейный оператор из Rn в Rm. Зададим с.к. погреш-
ность такой оценки:

h(R) = M‖Rξ − f‖2.

Чем меньше h(R), тем точнее Rξ оценивает f . Потребуем несме-
щённость оценки, т. е. наложим условие Mf̂j = fj для любого
j = 1, . . . , m и для любого значения fj ∈ R. Поскольку f̂ = Rξ,
мы можем переписать условие несмещённости как цепочку вектор-
ных равенств, используя свойства (4.5)–(4.9):

MRξ = MR(Af + ν) = M RAf + MRν = RAf + MRν = RAf.

Здесь мы учли, что RAf – неслучайный вектор и MRν = 0. Усло-
вие должно быть выполнено для любого f ∈ Rn, что приводит
к операторному равенству

RA = I. (4.14)

В результате мы приходим к следующей задаче: требуется найти
оператор R0 : Rn → Rm, такой что

M‖R0ξ − f‖2 = min
R : RA=I

M‖Rξ − f‖2. (4.15)

Эта задача называется задачей линейной регрессии. Если рассмат-
ривать скалярную величину M‖Rξ − f‖2 как аналог дисперсии
для векторной несмещённой оценки Rξ, то можно сказать, что за-
дача линейной регрессии – это задача поиска НОМД для векто-
ра f ∈ Rm в классе линейных оценок, построенных по вектору
ξ ∈ Rn.
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Заметим, что требование несмещённости совпадает с необходи-
мым и достаточным условием того, что с.к. погрешность конечна
при любом f ∈ Rm. Действительно,

M‖Rξ − f‖2 = M‖R(Af + ν) − f‖2 =

= M
(
‖(RA − I)f‖2 + 2((RA − I)f,Rν) + ‖Rν‖2

)
=

= ‖(RA − I)f‖2 + 2((RA − I)f,MRν) + M‖Rν‖2 =

= ‖(RA − I)f‖2 + M‖Rν‖2,

где мы учли неслучайность вектора (RA− I)f , формулу (4.8) вме-
сте с условием Mν = 0. Если не выполнено равенство (4.14), то с.к.
погрешность оценки зависит от неизвестного вектора f , а посколь-
ку f – любой вектор из Rm, погрешность может принимать любое,
в том числе и сколь угодно большое, значение. Наоборот, при вы-
полнении (4.14) с.к. погрешность оценки f̂j оказывается конечной
и равной

M‖Rν‖2 = TrRΣR∗ = σ2 TrRR∗,

где мы воспользовались формулой (4.9) и тем, что Σ = σ2I. Та-
ким образом, задача линейной регрессии сводится к поиску опера-
тора R0, который удовлетворяет условию R0A = I и доставляет
минимум TrRR∗ среди всех операторов R, таких что RA = I.

Теорема 1. Пусть в линейной схеме ξ = Af + ν погрешность ν
имеет нулевое среднее и ковариационный оператор Σ = σ2I, а опе-
ратор A∗A невырожден. Тогда оператор R0 = (A∗A)−1A∗ являет-
ся единственным решением задачи линейной регрессии. С.к. по-
грешность наилучшей оценки равна h(R0) = σ2 Tr(A∗A)−1.

Доказательство . Прежде всего заметим, что R0ξ – несмещённая
оценка для f , поскольку R0A = (A∗A)−1A∗A = I.

Пусть R – другой оператор, для которого RA = I и Z = R−R0,
тогда ZA = O (нулевой оператор из Rm в Rm). Отсюда, очевидно,
A∗Z∗ = (ZA)∗ = O.

Для оператора R = R0 +Z погрешность оценивания h(R) равна
M‖Rν‖2 = σ2 TrRR∗ и

RR∗ = (R0 + Z)(R0 + Z)∗ = R0R
∗
0 + R0Z

∗ + ZR∗
0 + ZZ∗.
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При этом R0Z
∗ = (A∗A)−1A∗Z∗ = (A∗A)−1(ZA)∗ = O, следова-

тельно, ZR∗
0 = (R0Z

∗)∗ = O. Итак, для любого R = R0 + Z, такого
что RA = I, мы имеем

Tr(RR∗) = Tr(R0R
∗
0) + Tr(ZZ∗).

При этом, если записать матрицу оператора Z в каком-либо базисе,
обозначив её элементы как Zji, j = 1, . . . , m, i = 1, . . . , n, то

Tr(ZZ∗) =
m∑

j=1

(ZZ∗)jj =
m∑

j=1

n∑
i=1

ZjiZ
T
ij =

=
m∑

j=1

n∑
i=1

ZjiZji =
m∑

j=1

n∑
i=1

(Zji)
2 > 0,

откуда следует, что Tr(RR∗) > Tr(R0R
∗
0), причём равенство воз-

можно, только если Zji = 0 для всех j = 1, . . . , m, i = 1, . . . , n.
После умножения на числовой множитель σ2 получаем

h(R) > h(R0) = σ2 Tr
(
(A∗A)−1A∗ · A(A∗A)−1

)
= σ2 Tr(A∗A)−1,

причём неравенство превращается в равенство тогда и только то-
гда, когда R = R0. Теорема доказана.

Оценки параметров линейной регрессии
методом наименьших квадратов

Другой метод получения оценок параметров линейной схемы
измерения состоит в подборе такого вектора f , чтобы предсказан-
ное моделью значение Af как можно меньше отличалось от ре-
зультата ξ измерения (4.12), критерием отличия является квадрат
нормы разности вектора измерения ξ и предсказанного моделью
вектора Af . Оценка вектора f , минимизирующая этот квадрат
нормы, называется оценкой метода наименьших квадратов (МНК).
Эта оценка определяется как решение экстремальной задачи

min
f∈Rm

‖ξ − Af‖2. (4.16)

Квадрат нормы ‖ξ − Af‖2 называется невязкой.

Теорема 2. Пусть оператор A∗A невырожден. Тогда

f0 = (A∗A)−1A∗ξ ∈ Rm

доставляет единственный минимум в (4.16).
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Доказательство . Для любого f ∈ Rm положим h = f −f0. Тогда
f = f0 + h и

‖ξ − Af‖2 = ‖ξ − Af0 − Ah‖2 =

= ‖ξ − Af0‖2 − 2(ξ − Af0, Ah) + ‖Ah‖2 =

= ‖ξ − Af0‖2 − 2(A∗ξ, h) + 2(A∗Af0, h) + ‖Ah‖2.

При этом A∗Af0 = A∗A(A∗A)−1A∗ξ = A∗ξ, поэтому (A∗Af0, h) =
(A∗ξ, h), и линейные по h члены сокращаются. Отсюда

‖ξ − Af‖2 = ‖ξ − Af0‖2 + ‖Ah‖2 > ‖ξ − Af0‖2,

причём неравенство превращается в равенство тогда и только то-
гда, когда Ah = 0. Отсюда следует, что A∗Ah = 0. Если, с другой
стороны, A∗Ah = 0, то

‖Ah‖2 = (Ah,Ah) = (A∗Ah, h) = 0 =⇒ Ah = 0.

Таким образом, Ah = 0 равносильно A∗Ah = 0, а последнее равен-
ство возможно только при h = 0 в силу невырожденности A∗A (мы
получаем h = (A∗A)−10 = 0). Теорема доказана.

Сформулируем полученные результаты в форме теоремы, ко-
торую называют теоремой Гаусса–Маркова.

Теорема 3. Пусть случайный вектор ξ ∈ Rn получен как ре-
зультат измерения в линейной схеме (4.12), в которой матрица
A : Rm → Rn, m 6 n, известна, а вектор случайных погрешностей
измерений имеет нулевое математическое ожидание и некорре-
лированные координаты с одинаковыми дисперсиями σ2. Пусть
матрица A∗A невырожденна. Тогда линейные НОМД координат
вектора f ∈ Rm, являющиеся решением задачи линейной регрес-
сии (4.15), даются вектором f̂ = R0ξ = (A∗A)−1A∗ξ и совпада-
ют с оценкой f0 МНК (4.16). Матрица ковариаций оценок равна
σ2(A∗A)−1.

Дисперсия оценки j-й координаты вектора f равна σ2(A∗A)jj ,
внедиагональные элементы матрицы σ2(A∗A) задают ковариации
оценок.



4.2. ОЦЕНИВАЮЩИЕ МНОЖЕСТВА В ЛИНЕЙНОЙ РЕГРЕССИИ 81

4.2. Множества, оценивающие параметры
линейной схемы при нормальном

распределении погрешности измерений
Пусть в (4.12) случайный вектор ν погрешности измерений име-

ет независимые координаты νi ∼ N(0, σ2), i = 1, . . . , n. Тогда мы
пишем ν ∼ N(0, σ2I), имея в виду, что его математическое ожида-
ние Mν = 0 (нулевой вектор) и ковариационный оператор Σ = σ2I.

При нормальной погрешности в линейной модели (4.12) по ре-
зультату измерения ξ можно построить случайные множества, на-
крывающие истинные значения неизвестных параметров f с за-
данной вероятностью, в том числе если неизвестна дисперсия σ2

погрешности измерений.
Воспользуемся свойствами N3, N1 из раздела 3.2: мы знаем,

что если с.в. νk ∼ N(0, σ2), k = 1, . . . , n, независимы, то

1
σ2

n∑
k=1

ν2
k ∼ X2

n.

Тогда для вектора ν ∼ N(0, σ2I) и любого ОНБ {ei}

n∑
k=1

ν2
k =

n∑
i=1

(ν, ei)2 = ‖ν‖2 ∼ σ2X2
n.

Здесь мы обозначили σ2X2
n распределение с.в. σ2χ2

n, где χ2
n ∼ X2

n.
Это свойство является частным случаем другого известного

свойства нормального распределения.

Свойство N6. Пусть случайный вектор ν ∼ N(0, σ2I), тогда для
любого ОНБ {ei} и любого r = 1, . . . , n с.в. (ν, ei), i = 1, . . . , r,
имеют распределение N(0, σ2) и независимы.

Отсюда следует, что если Π – ортогональный проектор на под-
пространство L размерности r, 1 6 r < n, то с.в.

‖Πν‖2 ∼ σ2X2
r , ‖(I − Π)ν‖2 ∼ σ2X2

n−r

и независимы. Чтобы это показать, достаточно выбрать в Rn ОНБ
e1, . . . , er, er+1, . . . , en так, чтобы первые r векторов лежали в L,
а остальные – в L⊥.
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Перейдём к построению оценивающих множеств. Рассмотрим
с.в. s2 = ‖ξ − Af‖2. Поскольку ξ − Af = ν ∼ N(0, σ2I), имеем
s2 ∼ σ2Xn, .

Введём пространство значений R(A) оператора A:

R(A) = {u ∈ Rn : u = Ax, x ∈ Rm}.

В матричном представлении оно состоит из всех линейных комби-
наций векторов-столбцов aj = 〈a1j , . . . , anj〉, j = 1, . . . , m, матрицы
оператора A. Как мы отмечали выше, если матрица A∗A невырож-
денна, то условие Ax = 0 влечёт x = 0. Это означает, что столбцы
aj , j = 1, . . . , m, линейно независимы. В самом деле, условие Ax = 0
для x = 〈x1, . . . , xm〉 можно записать как

x1a1 + · · · + xmam = 0

(в правой части равенства стоит нулевой столбец), а по нашему
условию это влечёт x1 = · · · = xm = 0. Поэтому dimR(A) = m.
Предположим, что m < n, где n – размерность пространства изме-
рений ξ.

Также введём ортогональное дополнение к R(A)

R⊥(A) = {v ∈ Rn : (v, u) = 0 для всех u ∈ R(A)}.

Тогда любой вектор y пространства Rn можно единственным обра-
зом представить как сумму y = u+v, где u ∈ R(A), v ∈ R⊥(A). Най-
дём проектор Π на R(A). Он задаётся, как известно, равенством
Πy = u. Покажем, что Π = A(A∗A)−1A∗. Если y = Ax ∈ R(A), то

Πy = A(A∗A)−1A∗y = A(A∗A)−1A∗Ax = Ax = y.

Если y ∈ R⊥(A), т. е. (y, Ax) = 0 для любого x ∈ Rm, то, последо-
вательно перенося сопряжённые операторы, имеем

‖A(A∗A)−1A∗y‖2 = (A(A∗A)−1A∗y, A(A∗A)−1A∗y) =

= ((A∗A)−1A∗y, A∗A(A∗A)−1A∗y) =

= ((A∗A)−1A∗y, A∗y) = (A∗y, (A∗A)−1A∗y) =

= (y, A(A∗A)−1A∗y).
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В этой цепочке равенств мы учли, что [(A∗A)−1]∗ = (A∗A)−1. По-
ложим z = (A∗A)−1A∗y, тогда в силу y ∈ R⊥(A)

‖A(A∗A)−1A∗y‖2 = (y, Az) = 0, A(A∗A)−1A∗y = 0.

Таким образом, Π = A(A∗A)−1A∗ проецирует на линейное под-
пространство R(A) размерности m, и I − Π есть проектор на ли-
нейное подпространство R⊥(A) размерности n − m.

Рассмотрим линейную схему измерения ξ = Af + ν. Поскольку
Af ∈ R(A), имеем (I − Π)Af = 0, следовательно,

(I − Π)ξ = (I − Π)Af + (I − Π)ν = (I − Π)ν.

Далее заметим, что Af ∈ R(A), поэтому

Πν = Π(ξ − Af) = Πξ − ΠAf = Πξ − Af.

При этом
Πξ = A(A∗A)−1A∗ξ = AR0ξ = Af̂,

где R0 – оператор, дающий решение задачи линейной регрессии,
а f̂ – наилучшая в с.к. смысле линейная несмещённая оценка век-
тора f .

Таким образом, по свойству ортогональных проекций нормаль-
но распределённого вектора ν с.в.

S2
2 = ‖Πξ − Af‖2 = ‖Af̂ − Af‖2 = ‖Πν‖2 ∼ σ2Xm (4.17)

и не зависит от с.в.

S2
1 = ‖(I − Π)ξ‖2 = ‖(I − Π)ν‖2 ∼ σ2Xn−m, (4.18)

так как случайные векторы Πν и (I −Π)ν лежат в ортогональных
подпространствах R(A) и R⊥(A).

Основываясь на свойствах распределений этих проекций, по-
строим множество в Rm, оценивающее одновременно все коорди-
наты вектора f , интервальные оценки каждой его координаты,
а в случае, когда дисперсия σ2 погрешности измерений неизвестна,
получим оценку и для неё.

1. Пусть сначала дисперсия σ2 погрешности измерений извест-
на. Тогда, чтобы построить оценивающее множество для вектора f ,
можно использовать с.в. S2

2 , заданную в (4.17).
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Выбрав уровень доверия γ, можем записать

P (σ−2‖A(f − f̂ )‖2 < εγ) = P (σ−2 · S2
2 < εγ) = γ, (4.19)

где εγ выбирается из условия P (χ2
m < εγ) = γ. Множество

Eγ = {f ∈ Rm : ‖A(f − f̂ )‖2 < σ2εγ}

представляет собой m-мерный эллипсоид со случайным центром
в точке f̂ = (A∗A)−1A∗ξ, который накрывает истинное значение
f ∈ Rm с вероятностью γ.

2. Если дисперсия σ2 неизвестна, то для её оценки можно ис-
пользовать статистику S2

1 ∼ σ2X2
n−m из (4.18). По определению

с.в. χ2
r как суммы

∑r
k=1 α2

k квадратов независимых с.в. αk с рас-
пределением N(0, 1) имеем

Mχ2
r = M

r∑
k=1

α2
k =

r∑
k=1

Mα2
k = r.

Как известно, Dχ2
r = 2r. Таким образом,

σ̂2 =
‖(I − Π)ξ‖2

n − m
(4.20)

есть несмещённая оценка для σ2. Дисперсия Dσ̂2 = 2σ4/(n − m)
этой оценки зависит от неизвестной величины σ2, тем не менее по-
лученное соотношение позволяет утверждать, что чем выше раз-
мерность вектора ξ (т. е. чем больше проведено измерений по схе-
ме (4.10)), тем точнее в с.к. можно оценить значение σ2. Если рас-
пределение ν отлично от нормального, то несмещённость оценки σ̂2

сохраняется, а для вычисления дисперсии этой оценки необходимы
дополнительные сведения.

3. Построим оценивающее множество для f при неизвестной
дисперсии σ2. Для этого нам потребуется новое распределение.

Определение 2. С.в. φs,m имеет распределение Снедекора–Фишера
с r и s степенями свободы, и мы пишем φr,s ∼ Φr,s, если

φr,s =
χ2

r/r

χ2
s/s

,
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где с.в. χ2
r и χ2

s независимы и имеют распределения хи-квадрат с s
и m степенями свободы. Также можно записать

φr,s =
1
r

∑r
k=1 ξ2

k

1
s

r+s∑
k=r+1

ξ2
k

,

где с.в. ξ1, . . . , ξr, ξr+1, . . . , ξr+s имеют распределение N(0, 1) и не-
зависимы.

Поставим в (4.19) вместо σ2 её несмещённую оценку по форму-
ле (4.20). В силу (4.17) и (4.18) получившаяся дробь имеет распре-
деление Снедекора–Фишера с m и n − m степенями свободы:

1
m‖A(f − f̂ )‖2

1
n−m‖(I − Π)ξ‖2

∼ Φm,n−m.

Выбрав уровень доверия γ, в этом случае также можем записать

P

( 1
m‖A(f − f̂ )‖2

1
n−m‖(I − Π)ξ‖2

6 ε

)
= γ, (4.21)

где f̂ = (A∗A)−1A∗ξ, а ε выбирается из условия

P (φ2
m,(n−m) < ε) = γ.

Получаем, что истинное значение вектора f ∈ Rm с вероятностью γ
накрывается случайным эллипсоидом{

f ∈ Rm : ‖A(f − f̂ )‖2 < ε
m

n − m
‖(I − Π)ξ‖2

}
с центром в точке f̂ = (A∗A)−1A∗ξ.

4. Построим теперь интервальную оценку j-й координаты век-
тора f при известной дисперсии σ2. Поскольку

f̂ = R0ξ = R0(Af + ν) = f + R0ν,

оценка f̂j = (R0ξ)j координаты fj является линейной комбинацией
нормальных с.в. и, следовательно, имеет нормальное распределе-
ние (см. свойство N2 в разделе 3.2). Эта оценка несмещённая, а её
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дисперсия равна j-му диагональному элементу матрицы (A∗A)−1,
умноженному на σ2. Обозначим эту дисперсию как σ2Djj . Следо-
вательно,

f̂j − fj√
σ2Djj

∼ N(0, 1), P

(
|f̂j − fj |√

σ2Djj

< ε

)
= γ, (4.22)

если ε выбрать из равенства P (|ν∗| 6 ε) = γ для стандартной нор-
мальной с.в. ν∗. Интервальная оценка для fj даётся равенством

P
(
|fj − f̂j | < ε

√
σ2Djj

)
= γ. (4.23)

5. Пусть дисперсия погрешности измерений неизвестна. Как
и при построении доверительного эллипсоида, заменим в форму-
ле (4.22) дисперсию σ2 на её оценку (4.20). Заметим, что случайный
вектор η = A(f̂ − f) ∈ R(A) не зависит от (I − Π)ξ ∈ R⊥(A), по-
этому (f̂ − f) ∼ N(0, σ2Djj) как вектор-функция от η не зависит
от ‖(I − Π)ξ‖2 ∈ σ2Xn−m. Отсюда получаем, что дробь

1

σ2
√

Djj
(f̂j − fj)

1
σ2

√
n−m

‖(I − Π)ξ‖
=

√
n − m

Djj

f̂j − fj

‖(I − Π)ξ‖

имеет распределение Стьюдента с n − m степенями свободы.
Выбирая по заданному уровню доверия γ значение ε из равен-

ства P (|tn−m| 6 ε) = γ, получим

P (|tn−m| 6 ε) = P

(√
n − m

Djj

|f̂j − fj |
‖(I − Π)ξ‖

< ε

)
= γ (4.24)

и найдем интервальную оценку для fj в виде интервала случайной
длины со случайным центром f̂j , разрешая неравенство под знаком
вероятности относительно |fj − f̂j |:

P

(
|fj − f̂j | < ε

√
Djj

n − m
‖(I − Π)ξ‖

)
= γ. (4.25)

Заметим, что длина интервала увеличивается с ростом дисперсии
Djj оценки f̂j и уменьшается с ростом n−m, т. е. когда количество
измерений увеличивается по сравнению с количеством оценивае-
мых параметров.
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