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1. Параметрические гипотезы

Понятие статистической гипотезы
В самой общей постановке задача проверки статистических ги-

потез формулируется следующим образом. Пусть задан набор на-
блюдений x = (x1, . . . , xn) ∈ Rn, 1 6 n < ∞. Предположим, что
результат x, полученный в эксперименте, есть реализация n-мер-
ной с.в. ξ = (ξ1, . . . , ξn). Статистическая гипотеза – это предполо-
жение о виде распределения с.в. ξ. Решить задачу проверки ста-
тистической гипотезы означает сформулировать правило, которое
по результату наблюдений x будет давать ответ на вопрос, верна
гипотеза или нет.

С математической точки зрения решение задачи проверки ста-
тистической гипотезы сводится к разбиению множества R возмож-
ных реализаций выборки на два подмножества: те реализации, по
которым мы будем делать вывод, что гипотеза верна, и те реали-
зации, которые свидетельствуют против гипотезы. Понятно, что
вследствие случайного характера наблюдений в общем случае лю-
бое решающее правило будет давать ошибочные решения, напри-
мер, согласно правилу мы делаем вывод, что гипотеза верна, а на
самом деле распределение с.в. ξ отличается от гипотетического.
Таким образом, при построении решающего правила необходимо
контролировать вероятности ошибочных решений.

Более простыми являются постановка и решение задач провер-
ки параметрических гипотез. В таких задачах, как и при оценива-
нии параметров, мы предполагаем, что распределение с.в. ξ задаёт-
ся известной априори функцией правдоподобия L(n)(x, θ), x ∈ Rn,
θ ∈ Θ, с неизвестным параметром θ. В случаях, когда размерность
выборки несущественна для наших рассуждений, мы пишем L(x, θ)
вместо L(n)(x, θ). Гипотеза заключается в том, что θ ∈ Θ удовле-
творяет каким-либо условиям.

В непараметрических задачах проверки гипотез предположение
формулируется относительно самого́ вида распределения.
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Начнём с самой простой задачи: выбора между двумя конкрет-
ными значениями параметра θ.

1.1. Простая гипотеза и простая альтернатива
Пусть в функции правдоподобия L(x, θ), x ∈ Rn, θ ∈ Θ, множе-

ство Θ состоит всего из двух значений параметра, Θ = {θH , θK}.
Наша гипотеза H заключается в том, что параметр распреде-

ления имеет значение θH ; предположение о том, что параметр ра-
вен θK , назовём альтернативой K. Итак,

H : θ = θH , K : θ = θK . (1.1)

Такие гипотеза и альтернатива называются простыми. Введём мно-
жество

R = {x ∈ Rn : L(x, θH) + L(x, θK) > 0} (1.2)

реализаций с.в. ξ, возможных или при гипотезе, или при альтерна-
тиве.

Для решения задачи проверки гипотезы H при альтернативе K
разобъём множество R на два непересекающихся подмножества,
R = DH + DK , одно из которых (DH) отвечает тем реализациям,
которые свидетельствуют в пользу гипотезы и против альтернати-
вы, а другое (DK) отвечает тем реализациям, которые свидетель-
ствуют в пользу альтернативы и против гипотезы. Такое разбиение
множества реализаций называется статистическим критерием.
Всюду далее мы пишем D вместо DK и называем D критическим
множеством, а множество DH обозначаем как R\DK и называ-
ем множеством принятия гипотезы. Альтернативным образом
критерий можно задать функцией

φ : R → R, φ(x) =

{
1, если x ∈ D,

0, если x ∈ R\D.
(1.3)

Она называется критической функцией. Видно, что критическая
функция – это индикатор критического множества.

При проверке простой гипотезы против простой альтернативы
после задания критерия легко найти вероятности ошибочных реше-
ний. Понятно, что в данном случае, имея наблюдение x, мы можем
совершать ошибки двух типов:
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1) согласно критерию мы обязаны отклонить гипотезу или, что
то же самое, принять альтернативу (т. е. реализация ξ = x попала
в множество D), но на самом деле гипотеза верна (т. е. ξ ∼ L( · , θH));

2) согласно критерию мы обязаны принять гипотезу или, что
то же самое, отклонить альтернативу (т. е. реализация x с.в. ξ по-
пала в множество R\D), но на самом деле гипотеза неверна, верна
альтернатива (т. е. ξ ∼ L( · , θK)).

Тогда вероятности первого и второго ошибочных решений рас-
считываются соответственно по формулам1)

α1
def= PH(ξ ∈ D) =

∫
D

L(x, θH) dx,

α2
def= PK(ξ ∈ R\D) =

∫
R\D

L(x, θK) dx.
(1.4)

Эти вероятности называются ошибками первого и второго рода.
Очевидно, что∫

D
L(x, θH) dx +

∫
R\D

L(x, θH) dx =
∫

R
L(x, θH) dx = 1,

и аналогично для интегралов по распределению L( · , θK). Ошибку
первого рода часто называют уровнем значимости статистиче-
ского критерия. Величина

1 − α1 = PH(ξ ∈ R\D) =
∫

R\D
L(x, θH) dx

равна вероятности принять гипотезу, когда гипотеза и в самом деле
верна. Эта вероятность называется уровнем доверия статистиче-
ского критерия. Далее во избежание путаницы мы будем использо-
вать для величины α1 только термин «ошибка первого рода». Для
1 − α2 также вводится специальный термин: величина

β
def= PK(ξ ∈ D) =

∫
D

L(x, θK) dx (1.5)

1)Здесь и далее мы считаем, что распределение выборки абсолютно непре-
рывно и записываем вероятность как интеграл от функции правдоподобия
(плотности вероятности). В случае дискретного распределения интеграл, ко-
нечно, нужно заменить на сумму. Кроме того, мы используем краткие обозна-
чения PH вместо PθH и PK вместо PθK .



1.1. ПРОСТАЯ ГИПОТЕЗА И ПРОСТАЯ АЛЬТЕРНАТИВА 7

называется мощностью критерия. Мощность критерия равна ве-
роятности отклонить гипотезу, когда гипотеза неверна.

Мы видим, что любой статистический критерий проверки про-
стой гипотезы θ = θH против простой альтернативы θ = θK харак-
теризуется двумя параметрами: ошибкой первого рода (у которой
мы далее не пишем нижний индекс и иногда называем её просто
ошибкой критерия) и мощностью критерия:

α
def= PH(ξ ∈ D) =

∫
D

L(x, θH) dx =
∫

R
φ(x)L(x, θH) dx,

β
def= PK(ξ ∈ D) =

∫
D

L(x, θK) dx =
∫

R
φ(x)L(x, θK) dx,

(1.6)

где мы воспользовались определением (1.3) критической функции.
Ошибка второго рода равна 1−β. Наша цель – построить статисти-
ческий критерий, т. е. выбрать множество D, так, чтобы величина α
была как можно меньше, а величина β – как можно больше. Но по-
нятно, что α и β связаны друг с другом, и почти всегда попытка
уменьшить α приводит к уменьшению β, а увеличение β – к уве-
личению α.

Задача проверки простой гипотезы против простой альтерна-
тивы ставится следующим образом: пусть задан некоторый при-
емлемый размер ошибки α0 ∈ (0, 1); понятно, что нас интересу-
ют малые α0, обычно выбирают α0 порядка нескольких процентов.
Введём множество критических функций вида (1.3), для которых
ошибка первого рода не превышает α0:

Cr = Cr(α0) =
{

φ( · ) :
∫

R
φ(x)L(x, θH) dx 6 α0

}
, (1.7)

(см. правое выражение для α в (1.6)). Требуется найти критиче-
скую функцию φ∗( · ) ∈ Cr, такую что

β∗ =
∫

R
φ∗(x)L(x, θK) dx = max

φ∈Cr

∫
R

φ(x)L(x, θK) dx. (1.8)

Введя критическое множество D∗ ⊂ R, представим критическую
функцию как

φ∗(x) =

{
1, если x ∈ D∗,

0, если x ∈ R\D∗.
(1.9)
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Этот критерий обладает максимальной мощностью в классе всех
критериев с ошибкой первого рода, не превосходящей заданной ве-
личины α0 ∈ (0, 1). Он так и называется: наиболее мощный крите-
рий (НМК).

Понятно, что найти НМК означает найти множество D∗ ⊂ R,
такое что для критической функции (1.9) выполнено (1.8).

Ответ на вопрос, как выглядит НМК, дает следующее утвер-
ждение, которое представляет собой упрощённый вариант фунда-
ментальной леммы Неймана–Пирсона.

Теорема 1. Решение задачи (1.8) в классе (1.7) имеет вид

φ∗(x) =

{
1, если L(x, θK) > C · L(x, θH),
0, если L(x, θK) 6 C · L(x, θH),

x ∈ R, (1.10)

где постоянная C > 0 находится из уравнения∫
R

φ∗(x)L(x, θH) dx = α0. (1.11)

Упрощённый характер этого утверждения связан с тем, что мы
считаем уравнение (1.11) разрешимым (для заданного α0 или для
любого α0 ∈ (0, 1)). Ниже мы приведём пример, когда это уравне-
ние не имеет решений, и докажем лемму Неймана–Пирсона в об-
щем случае.

Доказательство. Рассмотрим любую другую критическую функ-
цию φ из множества (1.7) с критическим множеством D. Понятно,
что с учётом вида критической функции∫

R
φ(x)L(x, θ) dx =

∫
D

L(x, θ) dx, θ = θH или θ = θK .

Введём обозначения для мощностей двух критериев – критерия,
заданного в (1.10), и произвольного из множества Cr:

β∗ =
∫

D∗
L(x, θK) dx, β =

∫
D

L(x, θK) dx.

Оценим разность мощностей

∆β = β∗ − β =
∫

D∗
L(x, θK) dx −

∫
D

L(x, θK) dx.
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Очевидно, что D∗ = (D∗ ∩ D) + (D∗\D) и D = (D ∩ D∗) + (D\D∗),
и в ∆β интегралы по общей части D∗ ∩ D сокращаются,

∆β =
∫

D∗\D
L(x, θK) dx −

∫
D\D∗

L(x, θK) dx.

В первом интеграле все значения переменной интегрирования ле-
жат в множестве D∗, следовательно,

L(x, θK) > C · L(x, θH) для всех x ∈ D∗\D.

Аналогично во втором интеграле x /∈ D∗, следовательно,

L(x, θK) 6 C · L(x, θH) для всех x ∈ D\D∗.

Подставляя эти оценки в ∆β и восстанавливая в обоих слагаемых
интегралы по общей части D∗ ∩ D, имеем

∆β > C

( ∫
D∗\D

L(x, θH) dx −
∫

D\D∗
L(x, θH) dx

)
=

= C

( ∫
D∗

L(x, θH) dx −
∫

D
L(x, θH) dx

)
.

Интегралы в правой части равенства задают ошибки первого рода
для критерия (1.10) и критерия с критическим множеством D. Для
критерия (1.10) справедливо равенство (1.11), для второго ошибка
не превосходит α0,∫

D∗
L(x, θH) dx = α0,

∫
D

L(x, θH) dx 6 α0.

Отсюда
∆β = β∗ − β > C · (α0 − α0) = 0,

тем самым β∗ > β для любого критерия с ошибкой первого рода,
не превосходящей α0. Теорема доказана.

Замечание 1. Решение задачи (1.8) в классе (1.7) можно так-
же получить, решая задачу на условный экстремум: мы макси-
мизируем по критическим функциям φ величину β при условии,
что α 6 α0. Функция Лагранжа такой задачи с точностью до сла-
гаемого, не зависящего от φ, имеет вид

β − cα =
∫

R
φ(x)

(
L(x, θK) − cL(x, θH)

)
dx,
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где c – параметр Лагранжа (см. определения (1.6)). Максимум по φ
функции Лагранжа с учётом того, что φ(x) = 0 или φ(x) = 1,
очевиден: нужно положить

φ(x) =

{
1, если L(x, θK) − cL(x, θH) > 0,

0, если L(x, θK) − cL(x, θH) 6 0,

что даёт критическое множество D∗ = {x : L(x, θK) > cL(x, θH)} из
леммы Неймана–Пирсона.

Замечание 2. Зададим на множестве реализаций R отношение
правдоподобия

r(x) =
L(x, θK)
L(x, θH)

, (1.12)

считая, что если L(x, θH)(x) = 0, то r(x) = +∞ в том смысле, что
r(x) > C для любого C ∈ R. Если L(x, θK) = 0, то r(x) = 0 и тем
самым неравенство r(x) > C не выполняется для любого C > 0.
Выполнение двух равенств L(x, θH) = 0 и L(x, θK) = 0 невозможно
для любого x ∈ R в силу определения (1.2) множества R. Тогда
мы можем записать критическое множество из леммы Неймана–
Пирсона как

D∗ = {x ∈ R : r(x) > C}, 0 6 r(x) 6 +∞, C > 0.

Если L(x, θH) = 0, а L(x, θK) ̸= 0, то реализацию x можно полу-
чить, только когда верна альтернатива. Тем самым мы, разумеется,
должны включить такие x в критическое множество любого кри-
терия. Это согласуется с тем, что r(x) = +∞ > C. Наоборот, если
L(x, θH) ̸= 0, а L(x, θK) = 0, то такая реализация x однозначно сви-
детельствует в пользу гипотезы, и мы без сомнения не включаем
её в критическое множество. Это согласуется с r(x) = 0 6 C. Про-
верка статистической гипотезы является нетривиальной задачей
только для тех реализаций, которые можно получить и в случае
гипотезы, и в случае альтернативы.

Рассмотрим пример, когда доказанная нами теорема работает.

Пример 1. Пусть ξ ∼ N(µ, 1) и H : µ = 0, K : µ = µ1, причём
µ1 > 0. Найдём НМК для этой задачи. Имеем

L(x; µ) =
1√
2π

e−(x−µ)2/2, x ∈ R.
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Пусть C > 0. Рассмотрим неравенство L(x; µ1) > C · L(x; 0). Пере-
пишем его через отношение правдоподобия:

r(x) =
L(x; µ1)
L(x; 0)

=
e−(x−µ1)2/2

e−x2/2
= e2xµ1 · e−µ2

1 > C.

Решение этого неравенства относительно x можно записать как
2xµ1 > C1 или как x > C0 в силу µ1 > 0. Постоянные C1 и C0 опре-
деляются параметром µ1 и постоянной C. Явные выражения для
них через эти величины нетрудно найти, но они нам не потребуют-
ся, потому что если известно значение C0, то неравенство x > C0

полностью определяет критическое множество НМК:

D∗ = {x ∈ R : x > C0}. (1.13)

Чтобы найти C0, воспользуемся уравнением (1.11):

α0 =
∫

D∗
L(x; 0) dx =

∫ ∞

C0

1√
2π

e−x2/2 dx = 1 − Φ(C0). (1.14)

Это уравнение в силу строгой монотонности интеграла вероятности
имеет единственное решение C0 для любого α0 ∈ (0, 1), и тем самым
соотношения (1.13), (1.14) задают единственно возможный НМК
для нашей задачи.

Условие µ1 > 0 является важным для построения НМК, при
противоположном неравенстве мы получили бы качественно дру-
гое множество D∗ = {x < C0}.

Замечание 3. Структура множества D∗ = {x > C0} достаточно
очевидна: если µ1 > 0, то чем больше значение реализации x, тем
скорее оно свидетельствует против гипотезы, потому что реализа-
ции нормального распределения концентрируются в окрестности
среднего значения µ = µ1 для альтернативы и µ = 0 для гипотезы.
Это же можно сказать и об общей формулировке леммы Неймана–
Пирсона. Если интерпретировать значение L(x, θ) как вероятность
того, что ξ = x, когда в распределении с.в. ξ стоит параметр θ, и
«измерять» значения L(x, θK) в «единицах» L(x, θH), то опять же
чем больше L(x, θK), тем скорее x свидетельствует в пользу аль-
тернативы, а не гипотезы.
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Замечание 4. В рассмотренном примере, как мы уже отмечали,
важную роль играет неравенство µ1 > 0. С другой стороны, кри-
тическое множество НМК D∗ = {x > C0} полностью определяется
уравнением (1.14), которое не зависит от µ1. Таким образом, для
любых µ1 > 0 НМК будет один и тот же.

Пример 2. Пусть ξ ∼ U[a, b], т. е.

L(x; [a, b]) =


1

b − a
, x ∈ [a, b],

0, x /∈ [a, b],
−∞ < a < b < ∞,

и H : [a, b] = [0, 2], K : [a, b] = [−1, 1]. Для краткости обозначим
функции правдоподобия для гипотезы и альтернативы как L0(x)
и L1(x). Множество реализаций есть R = [−1, 2], а отношение прав-
доподобия равно

r(x) =
L1(x)
L0(x)

=


+∞, x ∈ [−1, 0),

1, x ∈ [0, 1],
0, x ∈ (1, 2].

Решаем неравенство r(x) > C для x ∈ R и C > 0, получаем множе-
ство решений

D = {x : r(x) > C} =

{
[−1, 1], 0 6 C < 1,

[−1, 0), 1 6 C < ∞.

Тогда при 0 6 C < 1

α(C) =
∫
D

L0(x) dx =
∫

[−1,1]∩[0,2]

1
2

dx =
∫ 1

0

1
2

dx =
1
2
,

а при C > 1 мы получаем α(C) = 0.
Мы видим, что уравнение α(C) = α0 не имеет решения отно-

сительно C ни при каких α0, кроме α0 = 1/2 и α0 = 0. Конечно,
мы можем сказать, что для прочих α0 < 1/2 можно выбрать лю-
бое C > 1 и, следовательно, D∗ = [−1, 0), что даст нам нулевую
ошибку. Но в этом случае мощность критерия равна

β =
∫
D∗

L1(x) dx =
∫

[−1,0)∩[−1,1]

1
2

dx =
1
2
,
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и ошибка второго рода α2 = 1− β = 1/2, т. е. примерно в половине
случаев, пользуясь таким критерием, мы будем совершать ошибку,
когда примем гипотезу. Это неприемлемо высокая доля ошибочных
решений даже с учётом «бонуса» в виде нулевой ошибки первого
рода.

Далее мы покажем, как можно решить проблему неразрешимо-
сти уравнения (1.11).

Рандомизированные критерии
Будем считать, что критическая функция φ(x), x ∈ R, не при-

нимает два значения 1 и 0, а может быть равна любому числу из
отрезка [0, 1]. Тогда для каждого фиксированного x ∈ R число φ(x)
можно интерпретировать как вероятность того, что, имея резуль-
тат наблюдения x, мы отклоним гипотезу. Критерии, построенные
таким способом, называются рандомизированными.

Важно понимать, что вероятностная модель для φ(x) не имеет
никакого отношения к вероятностной природе с.в. ξ. Можно ска-
зать, что алгоритм принятия решения заключается в следующем:
для заданного ξ = x вычисляется значение φ(x), и далее разыг-
рывается случайный эксперимент (бросается несимметричная мо-
нетка с вероятностью φ(x) выпадения «орла»), в котором мы от-
клоняем гипотезу с вероятностью φ(x) (если монетка выпала вверх
«орлом»).

Покажем, что для рандомизированных критериев лемма Ней-
мана–Пирсона может быть строго сформулирована и доказана. Пе-
реопределим множество (1.7) рассматриваемых критических функ-
ций как

Cr = Cr(α0) =
{

φ( · ) : R → [0, 1],
∫

R
φ(x)L(x, θH) dx 6 α0

}
, (1.15)

где мы учли, что теперь для каждого x ∈ R значение φ(x) может
быть любым числом из отрезка [0, 1]. Задачу поиска НМК сохраним
в виде (1.8).

Теорема 2. 1. Решение задачи (1.8) в классе (1.15) имеет вид

φ∗(x) =


1, если L(x, θK) > C · L(x, θH),
a, если L(x, θK) = C · L(x, θH),
0, если L(x, θK) < C · L(x, θH),

x ∈ R, (1.16)
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где постоянные a ∈ [0, 1] и C > 0 находятся из уравнения∫
R

φ∗(x)L(x, θH) dx = α0. (1.17)

2. Уравнение (1.17) имеет решение для любого α0 ∈ (0, 1).

Мы видим, что по сравнению с теоремой 1 изменения коснулись
значений критической функции на множестве

{x ∈ R : L(x, θK) = C · L(x, θH)},

а именно, раньше мы относили такие реализации к критическому
множеству, т. е. при их наблюдении отклоняли гипотезу с вероятно-
стью (уверенностью) единица, а теперь отклоняем с вероятностью
(уверенностью) a.

Доказательство . Предположим, что уравнение (1.17) имеет ре-
шение. Пусть φ( · ) : R → [0, 1] – некоторая критическая функция
из множества (1.15). Разобъём R на следующие подмножества:

X+ = {x ∈ R : φ∗(x) − φ(x) > 0},
X0 = {x ∈ R : φ∗(x) − φ(x) = 0},
X− = {x ∈ R : φ∗(x) − φ(x) < 0}.

Тогда для разности мощностей критериев с критическими функ-
циями φ∗( · ) и φ( · ) имеем

∆β =
∫

R
φ∗(x)L(x, θK) dx −

∫
R

φ(x)L(x, θK) dx =

=
(∫

X+

+
∫

X0

+
∫

X−

)
[φ∗(x) − φ(x)]L(x, θK) dx,

причём интеграл по X0 очевидно равен нулю. Отсюда

∆β =
∫

X+

[φ∗(x) − φ(x)]L(x, θK) dx +
∫

X−
[φ∗(x) − φ(x)]L(x, θK) dx.

Если x ∈ X+, то φ∗(x) > φ(x) > 0, следовательно, φ∗(x) ̸=0.
Это означает, что такой x не может соответствовать третьей строке
в определении (1.16). В результате для x ∈ X+ имеем неравенства

L(x, θK) > C · L(x, θH),
[φ∗(x) − φ(x)]L(x, θK) > C · [φ∗(x) − φ(x)]L(x, θH),

(1.18)
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поскольку φ∗(x) − φ(x) > 0 для x ∈ X+.
Если x ∈ X−, то φ∗(x) < φ(x) 6 1, следовательно, φ∗(x) ̸= 1.

Это означает, что такой x не может соответствовать первой строке
в определении (1.16). В результате для x ∈ X− имеем неравенства

L(x, θK) 6 C · L(x, θH),
[φ∗(x) − φ(x)]L(x, θK) > C · [φ∗(x) − φ(x)]L(x, θH),

(1.19)

поскольку φ∗(x) − φ(x) < 0 для x ∈ X−.
При этом по условию∫

R
φ∗(x)L(x, θH) dx = α0,

∫
R

φ(x)L(x, θH) dx 6 α. (1.20)

Объединяя вторые неравенства в (1.18), (1.19) и условия (1.20),
а затем добавляя интеграл по X0, равный нулю, получаем

∆β =
( ∫

X+

+
∫

X−

)
[φ∗(x) − φ(x)]L(x, θK) dx >

> C

( ∫
X+

+
∫

X−

)
[φ∗(x) − φ(x)]L(x, θH) dx =

= C

∫
R
[φ∗(x) − φ(x)]L(x, θH) dx > C(α0 − α0) = 0.

Тем самым ∆β > 0 для любого рандомизированного критерия
с ошибкой первого рода, не превосходящей α0. Первый пункт тео-
ремы доказан.

Докажем разрешимость уравнения (1.17). Пусть критическая
функция φ∗(x), x ∈ R, имеет вид (1.16). В явном виде для x ∈ R
уравнение (1.17) может быть записано как∫

x : L(x,θK)>C·L(x,θH)

L(x, θH) dx + a ·
∫

x : L(x,θK)=C·L(x,θH)

L(x, θH) dx = α0. (1.21)

Рассмотрим отношение правдоподобия

r(x) =
L(x, θK)
L(x, θH)

, 0 6 r(x) 6 ∞, x ∈ R,

и введём с.в. r(ξ) обычным образом: r(ξ) = r(x), когда ξ = x.
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Далее мы считаем, что ξ ∼ L( · , θH), тогда r(ξ) < ∞ с вероят-
ностью единица. В последующих формулах мы не пишем нижний
индекс θH у значка вероятности, поскольку все вероятности ниже
в этом разделе вычисляются только по распределению с парамет-
ром θH .

Теперь вспомним, что интеграл от функции правдоподобия ра-
вен вероятности попадания с.в. ξ в область, по которой ведётся
интегрирование, ∫

X

L(x, θ) dx = Pθ(ξ ∈ X),

Поэтому уравнение (1.21) можно записать как

P (r(ξ) > C) + a · P (r(ξ) = C) = α0. (1.22)

Для с.в. r(ξ) введем функцию

F (z) def= P (r(ξ) > z), z ∈ R,

связанную с функцией распределения Fr(z) = P (r(ξ) < z), z ∈ R,
известным равенством

F (z) = 1 − P (r(ξ) 6 z) = 1 − Fr(z + 0), z ∈ R.

Сравним свойства этих двух функций:

Fr( · ) не убывает, F ( · ) не возрастает,

Fr( · ) непрерывна слева, F ( · ) непрерывна справа,

Fr(+∞) = 1, F (+∞) = 0,

Fr(C) = 0 при C 6 0, F (0) = 1 при C < 0

(напомним, что с.в. r(ξ) положительна) и, кроме того,

P (r(ξ) = z) = Fr(z + 0) − Fr(z) = F (z − 0) − F (z).

Тогда уравнение (1.22) можно переписать как

F (C) + a[F (C − 0) − F (C)] = α0. (1.23)
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Покажем, что уравнение (1.23) всегда имеет решение (C, a). Ес-
ли существует C, такое что F (C) = α0, то решением очевидно явля-
ется пара C, a = 0. В результате получаем нерандомизированный
критерий из теоремы 1.

Может ли для данного α0 ∈ (0, 1) не существовать C, такое что
F (C) = α0? Да, может, если α0 попало в разрыв значений функции
F ( · ), другими словами, при некотором C > 0 мы имеем

F (C − 0) > α0, F (C) < α0 (1.24)

(первое неравенство нестрогое, потому что если F (C − 0) = α0,
то число F (C − 0) существует, но не является значением функции
F ( · ) в какой-либо точке). С другой стороны, если в точке C имеется
разрыв, то

F (C − 0) − F (C) = P (r(ξ) = C) ̸= 0.

Тогда мы выбираем

a =
α0 − F (C)

F (C − 0) − F (C)
. (1.25)

Видно, что 0 < a 6 1 в силу (1.24), и уравнение (1.22) удовлетво-
ряется. Теорема доказана.

Решение (C, a) уравнения (1.17) даёт cтрого рандомизирован-
ный критерий, т. е. 0 < a < 1 в формуле (1.25), если левое пре-
дельное значение F (C − 0) > α0. Если F (C − 0) = α0, то критерий
нерандомизированный (a = 1), но критическое множество задаётся
неравенством L(x, θK) > C ·L(x, θH) в отличие от строгого неравен-
ства в теореме 1.

Из теоремы 2 следует, что рандомизация может потребоваться,
только если отношение правдоподобия r(ξ) при верной гипотезе
принимает какое-либо постоянное значение с ненулевой вероятно-
стью. В противном случае, т. е. когда при любом C для ξ ∼ L( · , θH)
мы имеем P (r(ξ) = C) = 0, НМК будет нерандомизированным.

1.2. Сложная альтернатива
В реальных экспериментах часто возникают задачи, в которой

гипотеза простая, но альтернатива сложная, т. е.

H : θ = θ0, K : θ ∈ ΘK , (1.26)
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где множество ΘK содержит более одного значения параметра. Ис-
следователь, как правило, может точно сформулировать гипотезу,
но допускает более или менее широкое множество альтернативных
вариантов в случае, когда гипотеза неверна.

Как и ранее, будем задавать критерий с помощью критической
функции φ(x), x ∈ R, равной единице на критическом множестве D
и нулю на множестве R\D принятия гипотезы (или φ(x) ∈ [0, 1], ес-
ли мы рассматриваем рандомизированные критерии). Ошибка кри-
терия по-прежнему равна

α = Pθ0(ξ ∈ D) =
∫

D
L(x; θ0) dx =

∫
R

φ(x)L(x; θ0) dx.

Однако теперь мощность критерия – это не число, а функция, за-
висящая от θ ∈ ΘK :

β(θ) def= Pθ(ξ ∈ D) =
∫

D
L(x; θ) dx =

∫
R

φ(x)L(x; θ) dx, θ ∈ ΘK .

Для каждого фиксированного θ1 ∈ ΘK величина β(θ1) равна мощ-
ности критерия проверки простой гипотезы θ = θ0 против простой
альтернативы θ = θ1.

Будем придерживаться того же подхода, что и выше: попыта-
емся найти критерий с максимальной мощностью (вероятностью
принять правильное решение, отклоняя гипотезу), одновременно
контролируя вероятность ошибочного отклонения гипотезы. Вновь
рассмотрим класс критериев Cr = Cr(α0) с ошибкой, не превосхо-
дящей фиксированной заранее величины α0.

Наша цель – максимизировать мощность критерия. Для каж-
дого фиксированного θ1 ∈ ΘK существует НМК, который стро-
ится по лемме Неймана–Пирсона. Однако вид этого критерия мо-
жет оказаться различным для разных значений θ1. Тогда мы не
сможем найти критерий, который был бы наиболее мощным сра-
зу для всех альтернатив: НМК для какого-либо альтернативного
значения параметра уже не будет наиболее мощным для другого
значения. Только если НМК имеет один и тот же вид для всех
θ ∈ ΘK , мы можем утверждать, что нашли равномерно наилучшее
по всем θ ∈ ΘK решение задачи проверки гипотез. Говорят, что
в этом случае существует равномерно наиболее мощный критерий
(РНМК).
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Хотя условие существования РНМК, кажется очень жёстким,
не так мало задач проверки гипотез допускают такое решение. Об-
ратимся к примеру 1, где для одномерной выборки из распределе-
ния N(µ, 1) мы проверяли (простую) гипотезу µ = 0 против (про-
стой) альтернативы µ = µ1 при условии µ1 > 0. НМК в этом случае
задаётся следующим образом:

D = {x > C},
∫ ∞

C

1√
2π

e−x2/2 dx = α0.

Мы видим, что условия, определяющие НМК, не зависят от µ1,
следовательно, мы получили РНМК проверки простой гипотезы
µ = 0 против сложной альтернативы µ > 0.

Однако если мы сформулируем альтернативу как µ1 ̸= 0, то
для такой задачи РНМК не существует. Это связано с тем, что для
µ1 < 0 критическое множество НМК имеет вид {x < C}, а для
µ1 > 0 – вид {x > C}. Таким образом, РНМК существует для
«односторонних» сложных альтернатив µ1 > 0, µ1 < 0, но не для
«двусторонней» сложной альтернативы µ1 ̸= 0.

Очевидно, что достаточным условием существования РНМК
является монотонность отношения правдоподобия. Пусть для всех
значений θ1 ∈ ΘK

r(x; θ0, θ1)
def=

L(x; θ1)
L(x; θ0)

> C ⇐⇒ x > C̃

или
r(x; θ0, θ1) > C ⇐⇒ x < C̃,

где C̃ не зависит от x, но может зависеть от θ0 и θ1. Тогда, выбирая
соответственно D = {x < C̃} или D = {x > C̃} и находя C̃ из
уравнения

Pθ0(ξ ∈ D) = α0,

получаем РНМК.
Как решать задачу проверки гипотезы при сложной альтерна-

тиве, если понятно, что в классе Cr(α0) РНМК не существует? По-
нятно, что в этом случае нам потребуется как-то иначе поставить
задачу, например сузить класс критериев или по-другому задать
характеристики качества критерия. Некоторые наиболее важные
подходы мы рассмотрим в следующих разделах.
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1.3. Локально наиболее мощные критерии
Будем решать задачу проверки простой параметрической гипо-

тезы H : θ = θ0 при сложной альтернативе K : θ ̸= θ0, считая, что
|θ − θ0| исчезающе мал (напомним, что мы рассматриваем θ ∈ R).
Другими словами, наша цель – отличить гипотезу от близкой аль-
тернативы. Заметим, что такая задача, как правило, является бо-
лее сложной, чем задача для альтернативных значений θ, сильно
отличающихся от θ0. Естественно предположить, что чем больше
отличаются θ и θ0, тем сильнее отличаются распределения выбор-
ки для гипотезы и для альтернативы. Например, если предполо-
жить, что θ = Mξk – математическое ожидание элемента выбор-
ки и Dξk < ∞, то в силу неравенства Чебышёва реализации с.в.
ξ1, ξ2, . . . , ξn c большой вероятностью лежат в окрестности значе-
ния θ. Когда |θ − θ0| много больше размера этой окрестности, мы
практически безошибочно сможем различить гипотезу и альтерна-
тиву.

Пусть, как и выше L(x, θ), x ∈ Rn, θ ∈ Θ, есть функция правдо-
подобия (плотность вероятности) n-мерной выборки. Рассмотрим
произвольный нерандомизированный критерий

φ(x) =

{
1, если x ∈ D,

0, если x /∈ D,
x ∈ R,

и введём функцию мощности в окрестности θ0:

β(θ) =
∫

D
L(x; θ) dx =

∫
R

φ(x)L(x; θ) dx, |θ − θ0| → 0.

Заметим, что в точке θ = θ0 значение β(θ0) – это ошибка критерия,

β(θ0) =
∫

D
L(x; θ0) dx =

∫
R

φ(x)L(x; θ0) dx.

Предположим, что функцию мощности в окрестности θ0 можно
разложить по формуле Тейлора до второго порядка,

β(θ) = β(θ0) + β′(θ0)(θ − θ0) +
1
2
β′′(θ0)(θ − θ0)2 + o(θ − θ0)2,

Поставим следующую задачу. Требуется найти критерий

φ∗
loc(x) =

{
1, если x ∈ D∗

loc,

0, если x /∈ D∗
loc,
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на котором для всех θ в бесконечно малой окрестности значения θ0

достигается максимум приближённой мощности

β̃(θ) = β(θ0) + β′(θ0)(θ − θ0) +
1
2
β′′(θ0)(θ − θ0)2 (1.27)

в классе всех критериев с ошибкой первого рода β(θ0) = α0. Кри-
терий φ∗

loc называется локально наиболее мощным (ЛНМК).
Сформулируем три альтернативы: две односторонние

K1 : θ > θ0, θ → θ0 + 0 и K2 : θ < θ0, θ → θ0 − 0

и одну двустороннюю K3 : θ ̸= θ0, θ → θ0. Заметим, что при малых
значениях |θ − θ0| третье слагаемое в правой части (1.27) много
меньше, чем второе. Это дает нам основание в случае односторон-
них альтернатив пренебречь третьим слагаемым и искать

max
(
α0 + β′(θ0)(θ − θ0)

)
.

С учётом знака разности θ − θ0 получаем, что локально наиболее
мощный критерий для односторонних альтернатив K1 и K2 опре-
деляется следующими экстремумами:

K1 : max β′(θ0), K2 : min β′(θ0). (1.28)

Для двусторонней альтернативы рассмотрим следующий условный
максимум:

max
{

α0 +
1
2
β′′(θ0)(θ − θ0)2

∣∣∣∣ β′(θ0) = 0
}

или, эквивалентно,

max
{
β′′(θ0)

∣∣ β′(θ0) = 0
}
. (1.29)

Условие β′(θ0) = 0 обеспечивает независимость максимальной мощ-
ности от знака разности θ − θ0.

Заметим, что, поскольку мы ищем критерий, равномерно наи-
более мощный по параметрам θ, лежащим в малой окрестности
значения θ0, естественно рассматривать критерии, у которых кри-
тическое множество D не зависит от θ ̸= θ0. Поэтому мы можем
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считать, что

β′(θ0) =
(

d

dθ

∫
D

L(x; θ) dx

)∣∣∣∣
θ=θ0

=
∫

D

∂L

∂θ
(x; θ0) dx,

β′′(θ0) =
(

d2

dθ2

∫
D

L(x; θ0) dx

) ∣∣∣∣
θ=θ0

=
∫

D

∂2L

∂θ2
(x; θ0) dx

(дополнительно полагая, что внесение производной под знак инте-
грала корректно). Тем самым задачи (1.28) и (1.29) сводятся к сле-
дующим задачам на условный экстремум:

K1 : max
D

{∫
D

∂L

∂θ
(x; θ0) dx

∣∣∣∣ ∫
D

L(x; θ0) dx = α0

}
,

K2 : min
D

{∫
D

∂L

∂θ
(x; θ0) dx

∣∣∣∣ ∫
D

L(x; θ0) dx = α0

}
, (1.30)

K3 : max
D

{∫
D

∂2L

∂θ2
(x; θ0) dx

∣∣∣∣ ∫
D
L(x; θ0) dx = α0,

∫
D

∂L

∂θ
(x; θ0) dx = 0

}
.

Для решения этих задач нам потребуется обобщённая лемма
Неймана–Пирсона.

Теорема 3. Пусть заданы некоторые функции

f0(x), f1(x), . . . , fm(x), x ∈ Rn,

и числа a1, . . . , am. Рассмотрим все подмножества D в Rn, удо-
влетворяющие условиям∫

D
fj(x) dx = aj , j = 1, . . . , m. (1.31)

Предположим, что существуют постоянные c1, . . . , cm, при ко-
торых множество

D∗ =
{
x ∈ Rn : f0(x) > c1f1(x) + · · · + cmfm(x)

}
удовлетворяет условиям (1.31). Тогда∫

D∗
f0(x) dx >

∫
D

f0(x) dx

для любого множества D, удовлетворяющего условиям (1.31).
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Доказательство. По аналогии с доказательством фундаменталь-
ной леммы Неймана–Пирсона рассмотрим разность

∆ =
∫

D∗
f0(x) dx −

∫
D

f0(x) dx =
( ∫

D∗\D
−

∫
D\D∗

)
f0(x) dx,

где мы учли, что интегралы по общей части D∗ ∩ D сокращаются.
По определению множества D∗ имеем

f0(x) > c1f1(x) + · · · + cmfm(x) для x ∈ D∗\D,

f0(x) 6 c1f1(x) + · · · + cmfm(x) для x ∈ D\D∗.

Отсюда

∆ >
( ∫

D∗\D
−

∫
D\D∗

) m∑
j=1

cjfj(x) dx =
( ∫

D∗
−

∫
D

) m∑
j=1

cjfj(x) dx =

=
m∑

j=1

cj

∫
D∗

fj(x) dx −
m∑

j=1

cj

∫
D

fj(x) dx =
m∑

j=1

cjaj −
m∑

j=1

cjaj = 0.

Таким образом, ∆ > 0, и теорема доказана.

Заменяя все знаки неравенств на противоположные, получаем
ещё один вариант леммы Неймана–Пирсона.

Теорема 4. В условиях теоремы 3 множество

D∗ =
{
x ∈ Rn : f0(x) < c1f1(x) + · · · + cmfm(x)

}
доставляет

min
∫

D
f0(x) dx

по всем множествам D, удовлетворяющим условиям (1.31).

Заметим, что теорема 1 (фундаментальная лемма Неймана–
Пирсона) есть частный случай теоремы 3 при m = 1, если поло-
жить

f0(x) = L(x, θK), f1(x) = L(x, θH), x ∈ R, a1 = α0.

Применим теоремы 3 и 4 к задачам (1.30). Положив в теореме 3

f0(x) =
∂L

∂θ
(x; θ0), f1(x) = L(x; θ0), x ∈ R, a1 = α0,
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получаем критическое множество ЛНМК в случае альтернативы
θ > θ0:

D∗
loc =

{
x ∈ Rn :

∂L

∂θ
(x; θ0) > C · L(x; θ0)

}
, (1.32)

где постоянная C определяется из уравнения∫
D∗

loc

L(x; θ0) dx = α0. (1.33)

Аналогичным образом из теоремы 4 получаем критическое мно-
жество ЛНМК в случае альтернативы θ < θ0:

D∗
loc =

{
x ∈ Rn :

∂L

∂θ
(x; θ0) < C · L(x; θ0)

}
, (1.34)

где постоянная C опять же определяется из уравнения (1.33).
Для двусторонней альтернативы положим в теореме 3

f0(x) =
∂2L

∂θ2
(x; θ0), f1(x) = L(x; θ0), f2(x) =

∂L

∂θ
(x; θ0)

и соответственно a1 = α0, a2 = 0. Получим

D∗
loc =

{
x ∈ Rn :

∂2L

∂θ2
(x; θ0) > C1 ·L(x; θ0) + C2 ·

∂L

∂θ
(x; θ0)

}
, (1.35)

где постоянные C1 и C2 определяются из системы двух уравнений:
уравнения (1.33) и уравнения∫

D∗
loc

∂L

∂θ
(x; θ0) dx = 0. (1.36)

1.4. Инвариантные критерии
Рассмотрим критические функции, аргументом которых явля-

ется не реализация с.в. ξ = (ξ1, . . . , ξn), а некоторая разумным об-
разом заданная функция от неё (статистика).

Пример 3. Пусть ξ ∼ N(µ, 1) и H : µ = 0, K : µ ̸= 0. В этой задаче
присутствует очевидная симметрия относительно замены ξ → −ξ.
При этой замене распределение с.в. остаётся нормальным и, что
особенно важно, соответствующая замена параметра µ → −µ не
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изменяет гипотезу и альтернативу. Это даёт нам основание рас-
сматривать в качестве статистики какую-либо чётную функцию
от ξ. В многомерном случае ξ = (ξ1, . . . , ξn) в качестве такой ста-
тистики выбирают

∑n
k=1 ξ2

k, что в одномерном случае даёт ξ2. Для
простоты формул мы возьмём в сущности эквивалентную стати-
стику t(ξ) = |ξ|. Понятно, что для x > 0

F|ξ|(x) = P (|ξ| < x) = P (−x < ξ < x) = Fξ(x) − Fξ(−x),

p|ξ|(x) =
dF|ξ|(x)

dx
= pξ(x) + pξ(−x),

где Fξ( · ) и pξ( · ) – функция распределения и плотность вероят-
ности с.в. ξ, и p|ξ|(x) = 0 при x < 0. Подставляя явный вид нор-
мальной плотности, для гипотезы получаем в качестве функции
правдоподобия статистики |ξ| функцию

L(x; 0) =
2√
2π

e−x2/2, x > 0,

а для альтернативы

L(x; µ) =
1√
2π

(e−(x−µ)2/2 + e−(−x−µ)2/2) =

=
1√
2π

e−(x2+µ2)/2(eµx + e−µx) =
2√
2π

e−(x2+µ2)/2 ch(µx),

где x > 0. Отношение правдоподобия имеет вид

r(x, µ) =
L(x; µ)
L(x; 0)

= e−µ2/2 ch(µx), x > 0.

Решая неравенство r(x, µ) > C при x > 0, получаем x|µ| > C1 или
x > C0. При решении неравенств мы, как обычно, не обращаем
внимание на зависимость постоянных от µ. Если теперь выбрать
постоянную C0 из условия

α0 =
∫ ∞

C0

L(x; 0) dx =
∫ ∞

C0

2√
2π

e−x2/2 dx = 2(1 − Φ(C0)),

то в классе всех критериев, зависящих от статистики |ξ|, мы по-
лучим РНМК проверки гипотезы µ = 0 против сложной альтерна-
тивы µ ̸= 0 с ошибкой первого рода не больше α0. Этот критерий
отклоняет гипотезу, если |ξ| > C0.
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Сформулируем такой подход математически более строго. Бу-
дем считать выборку ξ = (ξ1, . . . , ξn) случайным вектором со значе-
ниями в евклидовом пространстве Rn. Пусть G – некоторая груп-
па2) взаимно однозначных преобразований пространства Rn. Для
x ∈ Rn и преобразования g ∈ G мы записываем результат преоб-
разования вектора x как gx. Любая функция t( · ) на Rn, удовле-
творяющая условию

t(gx) = t(x) для любого x ∈ Rn и любого g ∈ G, (1.37)

называется инвариантом группы G. Множество значений функ-
ции t( · ) может быть произвольным, но, имея в виду использование
инвариантов для построения критериев, мы считаем, что t(x) – это
вещественное число.

Среди инвариантов выделяют максимальный инвариант T (x),
x ∈ Rn, такой что из T (x1) = T (x2) следует, что x2 = gx1 для
некоторого g ∈ G. Справедливо следующее утверждение.

Предложение 1. Функция t(x), x ∈ Rn, является инвариантом
тогда и только тогда, когда она зависит от x через максималь-
ный инвариант, т. е. на множестве значений максимального ин-
варианта T (x), x ∈ Rn, существует функция S( · ), такая что
t(x) = S(T (x)) для всех x ∈ Rn.

Доказательство . Если t(x) = S(T (x)), то для любого g ∈ G

t(gx) = S(T (gx)) = S(T (x)) = t(x), x ∈ Rn,

и t( · ) – инвариант.
Докажем обратное утверждение. Пусть t( · ) – инвариант. Тогда

мы можем задать функцию S( · ) следующим образом: для каждого
значения T (x) положим

S(T (x)) = t(x), x ∈ Rn.

Это определение корректно, т. е. каждому x ∈ Rn отвечает един-
ственное значение S(T (x)), поскольку

T (x2) = T (x1) =⇒ x2 = gx1 =⇒ t(x2) = t(gx1) = t(x1).
2)В наших рассуждениях определение группы и её свойства не играют важ-

ной роли, и мы их опускаем. Подробности можно найти в многочисленных
учебниках по теории групп.
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Вернёмся к задачам проверки гипотез. Будем называть рас-
пределение выборки инвариантным относительно группы G, если
для любого преобразования g ∈ G и любого θ ∈ Θ найдётся един-
ственное значение параметра ḡθ ∈ Θ, такое что ξ ∼ L( · ; θ) влечёт
gξ ∼ L( · ; ḡθ). Другими словами, преобразование выборки порож-
дает такое преобразование её распределения, которое не меняет
вид функции правдоподобия, но, вообще говоря, меняет значение
параметра, однако оставляет его в множестве Θ. Мы, конечно, до-
полнительно предполагаем, что gξ является с.в., т. е. имеет распре-
деление, для любого преобразования g ∈ G.

Задача проверки гипотез называется инвариантной относитель-
но группы G, если:

1) распределение выборки инвариантно относительно G;
2) для θ ∈ ΘH имеем ḡθ ∈ ΘH , для θ ∈ ΘK имеем ḡθ ∈ ΘK , т. е.

индуцированное преобразованием g ∈ G преобразование ḡ множе-
ства параметров не изменяет гипотезу и альтернативу.

Для инвариантной задачи проверки гипотез естественно рас-
сматривать инвариантные критерии, критическая функция кото-
рых есть инвариант группы G. Согласно доказанному утвержде-
нию все инвариантные критерии по сути зависят от максимального
инварианта (опять же мы полагаем, что максимальный инвариант
T (ξ) есть с.в.).

Обобщим пример 3, взяв n-мерную выборку из нормального
распределения N(µ, I), где µ ∈ Rn, и поставим задачу проверки
гипотезы µ = 0 (нулевой вектор) против альтернативы µ ̸= 0. Эта
задача инвариантна относительно группы ортогональных преобра-
зований евклидова пространства (поворотов и отражений). В са-
мом деле, если U – ортогональный оператор и ξ ∼ N(µ, I), то
Uξ ∼ N(Uµ, I) и Uµ = 0 тогда и только тогда, когда µ = 0. Мак-
симальный инвариант этой группы – квадрат нормы вектора,

T (x) = ∥x∥2 =
n∑

k=1

x2
k, x = ⟨x1, . . . , xn⟩.

Если µ = 0, то T (ξ) ∼ X2
n. Если µ ̸= 0, то статистика T (ξ) имеет

так называемое нецентральное распределение хи-квадрат, которое
при заданном n полностью определяется параметром нецентраль-
ности ∥µ∥2. Известно, что отношение правдоподобия для этих двух
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распределений монотонно возрастает, следовательно, в классе ин-
вариантных критериев существует РНМК, задающийся как

D = {∥x∥2 > C},
∫ ∞

C
pn(x) dx = α0,

где pn( · ) – плотность вероятности для распределения X2
n.

В заключение этого раздела приведём максимальные инвариан-
ты некоторых групп преобразований евклидова пространства Rn.

Группа сдвигов на константу:

gx = g⟨x1, . . . , xn⟩ = ⟨x1 + a, . . . , xn + a⟩, a ∈ R.

Максимальный инвариант T (x) = ⟨x1−xn, . . . , xn−1−xn⟩. В данном
случае максимальный инвариант – это (n− 1)-мерный вектор. Ко-
нечно, существуют и другие максимальные инварианты, например,
можно брать разности xk − x1 для k = 2, . . . , n.

Группа преобразований масштаба:

gx = g⟨x1, . . . , xn⟩ = ⟨ax1, . . . , axn⟩, a ∈ R.

Максимальный инвариант T (x) = ⟨x1/xn, . . . , xn−1/xn⟩. В данном
случае нам нужно потребовать, чтобы для соответствующего слу-
чайного вектора ⟨ξ1, . . . , ξn⟩ было выполнено условие P (ξn = 0) = 0,
тем самым мы можем исключить из рассмотрения случай деления
на ноль в координатах максимального инварианта.

Группа перестановок элементов множества {x1, . . . , xn} веще-
ственных чисел:

g(x) = g(x1, . . . , xn) = (xi1 , . . . , xin), x = (x1, . . . , xn),

где i1, . . . , in – перестановка натуральных чисел 1, . . . , n. Макси-
мальный инвариант T (x) = x1 + · · · + xn.

1.5. Несмещённые, байесовские
и максиминные критерии

Вернёмся к общей задаче проверки параметрической сложной
гипотезы H : θ ∈ ΘH против сложной альтернативы K : θ ∈ ΘK
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и рассмотрим класс критериев с максимальной ошибкой первого
рода не выше α0:

Cr∗ = Cr∗(α0) =
{

φ( · ) : R → [0, 1], sup
θ∈ΘH

∫
R

φ(x)L(x; θ) dx 6 α0

}
,

Для любого такого критерия

α(θ) =
∫

R
φ(x)L(x; θ) dx 6 α0 для всех θ ∈ ΘH .

При этом мощность критерия

β(θ) =
∫

R
φ(x)L(x; θ) dx, θ ∈ ΘK ,

может оказаться и больше α0, и меньше α0, но в последнем случае,
отклоняя гипотезу, мы совершаем ошибку чаще, чем принимаем
правильное решение. Такой критерий вряд ли можно считать удо-
влетворительным.

Несмещённые критерии
Рассмотрим критерии, в которых мощность всегда не меньше

ошибки первого рода.

Определение 1. Критерий φ называется несмещённым, если{
α(θ) 6 α0 для всех θ ∈ ΘH ,

β(θ) > α0 для всех θ ∈ ΘK .
(1.38)

Видно, что несмещённый критерий принадлежит Cr∗(α0).

Существует тривиальный (рандомизированный) несмещённый
критерий: положим φ(x) = α0 для всех x ∈ R. Для такого критерия
при любых θ (как для гипотезы, так и для альтернативы)∫

R
φ(x)L(x; θ) dx = α0 ·

∫
R

L(x; θ) dx = α0.

Условие (1.38) можно заменить более простым. Пусть функ-
ции α( · ) и β( · ) непрерывно зависят от своего аргумента θ при
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θ ∈ ΘH и θ ∈ ΘK соответственно. Определим ΘHK – множество об-
щих граничных точек гипотезы и альтернативы, т. е. множество то-
чек, которые являются предельными и для ΘH , и для ΘK . Если, на-
пример, ΘH = [θ1, θ2] и ΘK = (−∞, θ1)+(θ2,∞), то ΘHK = {θ1, θ2}.
Тогда условие несмещённости (1.38) влечёт

α(θ) = β(θ) = α0 для всех θ ∈ ΘHK . (1.39)

Тем самым множество несмещённых критериев содержится в мно-
жестве критериев, удовлетворяющих условию (1.39). Следователь-
но, если среди всех критериев, удовлетворяющих (1.39), существу-
ет РНМК φ∗, то его мощность β∗(θ) не меньше мощности любого
несмещённого критерия,

β∗(θ) > β(θ) > α0 для каждого θ ∈ ΘK ;

здесь β(θ) – значение мощности какого либо несмещённого крите-
рия.

Мы доказали следующее утверждение.

Предложение 2. Если α( · ) и β( · ) непрерывно зависят от сво-
его аргумента θ при θ ∈ ΘH и θ ∈ ΘK соответственно, а кри-
терий φ∗ является РНМК в классе всех критериев из Cr∗(α0),
удовлетворяющих условию (1.39), то он является несмещённым
(удовлетворяет условию (1.38)) и равномерно наиболее мощным
в классе всех несмещённых критериев с ошибкой первого рода не
выше α0.

Используя это предложение, мы можем искать РНМК в классе
несмещённых критериев из Cr∗(α0), проверяя условие (1.39), кото-
рое проще, чем (1.38).

Пример 4. Пусть ξ ∼ E(θ), Θ = {θ > 0} и

H : θ ∈ [θ1, θ2], K : θ /∈ [θ1, θ2], θ > 0,

где 0 < θ1 < θ2. Отношение правдоподобия для экспоненциального
распределения равно

r(x; θ, θ′) =
L(x; θ′)
L(x; θ)

=
θ′e−θ′x

θe−θx
=

θ′

θ
e−(θ′−θ)x, x > 0,
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Понятно, что

r(x; θ, θ′) > C ⇐⇒ (θ′ − θ)x < c1,

что для θ′ > θ даёт критическое множество вида {x < c}, а для
θ′ < θ мы имеем критическое множество вида {x > c}. Таким
образом, для двусторонней альтернативы не существует РНМК.

Условие (1.39) – это система уравнений в точках θ1, θ2 на гра-
нице гипотезы и альтернативы:

β(θ1) =
∫ ∞

0
φ(x)θ1e

−θ1x dx =
∫

D
θ1e

−θ1x dx = α0,

β(θ2) =
∫ ∞

0
φ(x)θ2e

−θ2x dx =
∫

D
θ2e

−θ2x dx = α0.

Доказательство того, что среди критериев, удовлетворяющих это-
му условию, существует РНМК, весьма непростое, и мы его опу-
стим. Однако попробуем найти вид критического множества на ос-
нове свойств экспоненциального распределения. Мы знаем, что ес-
ли ξ ∼ E(θ), то Mξ = 1/θ. Таким образом, при θ ∈ [θ1, θ2] мы
скорее будем наблюдать промежуточные реализации x ∈ [c1, c2],
чем близкие к нулю или очень большие. Это даёт нам основание
выбрать [c1, c2] как множество принятия гипотезы. Оказывается,
что именно такой критерий является РНМК среди критериев, удо-
влетворяющих условию (1.39).

С учётом предложения 2 несмещённый РНМК с ошибкой пер-
вого рода не выше α0 имеет вид

φ∗(x) =

{
1, если x ∈ [c1, c2],
0, если x /∈ [c1, c2],

где постоянные 0 < c1 < c2 определяются из системы уравнений∫ c2

c1

θ1e
−θ1x dx = 1 − α0,∫ c2

c1

θ2e
−θ2x dx = 1 − α0.

Решение системы существует и единственно, поэтому в Cr∗(α0) су-
ществует несмещённый РНМК.
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Байесовские критерии

Байесовским называется подход, в котором искомому парамет-
ру сначала приписывается некоторое априорное вероятностное рас-
пределение, а после получения результата наблюдений это распре-
деление пересчитывается в апостериорное (условное при заданном
результате наблюдений) по формуле Байеса.

Рассмотрим для простоты случай, когда θ – одномерная с.в.,
принимающая значения t ∈ Θ. Мы зададим распределения этой
с.в. отдельно на множествах ΘH и ΘK и будем считать, что на
этих множествах с.в. θ имеет плотности вероятности gH( · ) и gK( · )
соответственно,∫

ΘH

gH(t) dt = 1,

∫
ΘK

gK(t) dt = 1.

Они задают априорное распределение параметра3). В отличие от
рандомизированного критерия, априорное распределение с.в. θ не
связано с конкретным наблюдением x ∈ R, и по сути мы имеем сов-
местное распределение двух с.в.: выборки ξ и параметра θ. В этих
терминах то, что мы раньше обозначали как L(x; θ), есть значение
условной плотности вероятности выборки в точке x при условии,
что параметр фиксирован. Мы теперь можем написать

L(x; t) = pξ|θ(x|t), x ∈ R, t ∈ ΘH или t ∈ ΘK .

Если задан критерий φ проверки гипотезы θ ∈ ΘH против аль-
тернативы θ ∈ ΘK , то ошибку и мощность такого критерия теперь
естественно усреднить по распределению с.в. θ. При фиксирован-
ном θ = t ошибка и мощность задаются как интеграл

Pt(ξ ∈ D) =
∫

D
L(x; t) dx =

∫
R

φ(x)L(x; t) dx,

где t ∈ ΘH для ошибки критерия и t ∈ ΘK для его мощности. При

3)Распределение с.в. θ также можно задать на всём множестве Θ; после суже-
ния этого распределения на множества ΘH и ΘK и умножения на соответству-
ющее нормировочные множители мы приходим к распределениям на множе-
ствах гипотезы и альтернативы.
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этом средние ошибка и мощность равны

ᾱ =
∫

ΘH

α(t)gH(t) dt =
∫

ΘH

[ ∫
R

φ(x)L(x; t) dx

]
gH(t) dt

β̄ =
∫

ΘK

β(t)gK(t) dt =
∫

ΘK

[ ∫
R

φ(x)L(x; t) dx

]
gK(t) dt.

Поменяем в этих выражениях порядок интегрирования, получим

ᾱ =
∫

R
φ(x)

[ ∫
ΘH

L(x; t)gH(t) dt

]
dx =

∫
R

φ(x)p̄H(x) dx,

β̄ =
∫

R
φ(x)

[ ∫
ΘK

L(x; t)gK(t) dt

]
dx =

∫
R

φ(x)p̄K(x) dx,

(1.40)

где мы ввели обозначения p̄H(x) и p̄K(x) для интегралов в квадрат-
ных скобках,

p̄H(x) =
∫

ΘH

L(x; t)gH(t) dt,

p̄K(x) =
∫

ΘK

L(x; t)gK(t) dt.

(1.41)

Заметим, что p̄H(x) > 0, при этом∫
R

p̄H(x) dx =
∫

ΘH

gH(t) dt

∫
R

L(x; t) dx =
∫

ΘH

gH(t) dt = 1

и аналогично для p̄K( · ), т. е. p̄H( · ) и p̄K( · ) имеют смысл плотно-
стей вероятности. Это также можно понять из следующих рассуж-
дений: мы имеем L(x; t)gH(t) = pξ|θ(x|t)pθ(t) = pξ,θ(x, t) для t ∈ ΘH ;
аналогично L(x; t)gK(t) = pξ,θ(x, t) для t ∈ ΘK . Интегрируя эти
выражения соответственно по t ∈ ΘH и по t ∈ ΘK , мы получаем
(безусловные) плотности вероятности с.в. ξ в точке x для гипотезы
и альтернативы.

Заметим также, что плотности (1.41) можно интерпретировать
как усреднённые по распределениям параметров гипотезы и аль-
тернативы функции правдоподобия L(x; · ) (плотности вероятно-
сти выборки) при фиксированном x,

p̄H(x) = MθL(x; θ), θ ∈ ΘH , p̄K(x) = MθL(x; θ), θ ∈ ΘK

(здесь нижний индекс у математического ожидания означает, что
оно вычисляется по распределению с.в. θ).
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Мы видим, что формулы (1.40) в точности соответствуют ошиб-
ке и мощности критерия φ в задаче проверки простой гипотезы
ξ ∼ p̄H( · ) против простой альтернативы ξ ∼ p̄K( · ). Для этой зада-
чи в классе всех критериев с ᾱ 6 α0 по лемме Неймана–Пирсона
существует НМК φ∗. Этот критерий характеризуется допустимым
размером ошибки α0 и максимально возможной при такой ошибке
мощностью:

ᾱ0 =
∫

R
φ∗(x)

[ ∫
ΘH

L(x; t)gH(t) dt

]
dx =

∫
R

φ∗(x)p̄H(x) dx,

β̄∗ =
∫

R
φ∗(x)

[ ∫
ΘK

L(x; t)gK(t) dt

]
dx =

∫
R

φ∗(x)p̄K(x) dx.

(1.42)

Недостатком предложенного решения является его зависимость
от априорных распределений gH( · ) и gK( · ), задание которых не-
очевидно. Далее мы отмечаем эту зависимость от распределений,
положив φ∗ = φ∗

g . Мощность данного НМК обозначим как β̄∗
g .

Максиминные критерии.
Подойдём к нашей задаче с другой стороны. На время забу-

дем о том, что gH( · ) и gK( · ) – распределения на множестве пара-
метров, но продолжим использовать критерий φ∗

g, найденный по
лемме Неймана–Пирсона в байесовском подходе. Никто не может
запретить нам применить этот критерий φ∗

g для проверки простой
гипотезы θ = t ∈ ΘH против простой альтернативы θ = t′ ∈ ΘK

(назовём такую задачу проверки гипотез локальной). При этом ка-
чество критерия задаётся локальными ошибкой и мощностью

α∗
g(t) =

∫
R

φ∗
g(x)L(x; t) dx, β∗

g (t′) =
∫

R
φ∗

g(x)L(x; t′) dx.

Теперь вспомним, что на самом деле гипотеза и альтернатива слож-
ные, и рассмотрим наихудшую (наибольшую) по t ∈ ΘH локальную
ошибку и наихудшую (наименьшую) по t′ ∈ ΘK локальную мощ-
ность, т. е. величины

sup
t∈ΘH

α∗
g(t), inf

t′∈ΘK

β∗
g (t′), (1.43)

и примем их за характеристики качества нашего (байесовского)
критерия φ∗

g как критерия проверки сложной гипотезы θ ∈ ΘH

против сложной альтернативы θ ∈ ΘK в небайесовской постановке.
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Ещё раз обратим внимание на то, что мы используем один и тот
же критерий для решения разных задач: проверки простой гипо-
тезы ξ ∼ p̄H( · ) против простой альтернативы ξ ∼ p̄K( · ) и для
проверки сложной гипотезы ξ ∼ L( · ; θ), θ ∈ ΘH против сложной
альтернативы θ ∈ ΘK . При этом характеристики качества крите-
рия в этих двух случаях задаются по-разному, формулами (1.42)
и (1.43), и их значения, вообще говоря, могут отличаться. Связь
между этими характеристиками даётся следующей теоремой.

Теорема 5. Пусть α0 ∈ (0, 1) фиксировано. Предположим, что
найдутся такие распределения g∗H( · ) и g∗K( · ), что в (1.43)

sup
t∈ΘH

α∗
g∗(t) 6 α0, inf

t′∈ΘK

β∗
g∗(t

′) = β̄∗
g∗ (1.44)

(наихудшая мощность в небайесовской постановке и мощность
байесовского НМК для g∗-распределений совпадают). Тогда:

1) для любого критерия φ, такого что

sup
t∈ΘH

∫
R

φ(x)L(x; t) dx 6 α0, (1.45)

его минимальная по t ∈ ΘK мощность не больше, чем β̄∗
g∗ ;

2) распределения g∗H( · ) и g∗K( · ) являются наихудшими в том
смысле, что для любых других распределений gH( · ) и gK( · ) мощ-
ность β̄∗

g соответствующего НМК критерия φ∗
g проверки байе-

совской гипотезы с ошибкой не выше α0 не ниже мощности кри-
терия φ∗

g∗ :
ᾱ∗

g 6 α0, β̄∗
g > β̄∗

g∗ . (1.46)

Доказательство . 1. Пусть заданы распределения g∗H( · ) и g∗K( · ),
удовлетворяющие (1.44). Рассмотрим любой критерий φ проверки
гипотезы θ ∈ ΘH против альтернативы θ ∈ ΘK с ошибкой, удовле-
творяющей (1.45). Тогда для любого t ∈ ΘH

α(t) =
∫

R
φ(x)L(x; t) dx 6 α0. (1.47)

В силу нормировки плотности g∗H( · ) параметра θ отсюда имеем∫
ΘH

α(t)g∗H(t) dt 6
∫

ΘH

α0 · g∗H(t) dt = α0.
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С другой стороны, меняя порядок интегрирования, получаем∫
ΘH

α(t)g∗H(t) dt =
∫

ΘH

[ ∫
R

φ(x)L(x; t) dx

]
g∗H(t) dt =

=
∫

R
φ(x)

[ ∫
ΘH

L(x; t)g∗H(t) dt

]
dx =

∫
R

φ(x)p̄ ∗
H(x) dx.

Следовательно, ∫
R

φ(x)p̄ ∗
H(x) dx 6 α0.

Таким образом, φ является критерием проверки простой гипотезы
ξ ∼ p̄ ∗

H( · ) с ошибкой не выше α0. Если мы теперь возьмём в каче-
стве альтернативы ξ ∼ p̄ ∗

K( · ), где

p̄ ∗
K(x) =

∫
ΘK

L(x; t′)g∗K(t′) dt′,

то мощность критерия φ будет не выше мощности НМК φ∗
g∗ , кото-

рая равна β̄∗
g∗ . В результате получаем

β̄∗
g∗ >

∫
R

φ(x)p̄ ∗
K(x) dx =

∫
R

φ(x)
[ ∫

ΘK

L(x; t′)g∗K(t′) dt′
]

dx =

=
∫

ΘK

[ ∫
R

φ(x)L(x; t′) dx

]
g∗K(t′) dt′ =

∫
ΘK

β(t′)g∗K(t′) dt′ >

> inf
t′∈ΘK

β(t′) ·
∫

ΘK

g∗K(t′) dt′ = inf
t′∈ΘK

β(t′). (1.48)

Первый пункт теоремы доказан.
2. Для произвольных распределений gH( · ) и gK( · ) напомним

обозначения∫
ΘH

L(x; t)gH(t) dt = p̄H(x),
∫

ΘK

L(x; t)gK(t) dt = p̄K(x).

Напомним также, что для этих распределений существует крите-
рий φ∗

g проверки гипотезы ξ ∼ p̄H( · ) против ξ ∼ p̄K( · ), который
задается как НМК по лемме Неймана–Пирсона .
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С другой стороны, если мы возьмём в этой же задаче крите-
рий φ∗

g∗ , то∫
R

φ∗
g∗(x)p̄H(x) dx =

∫
ΘH

[ ∫
R

φ∗
g∗(x)L(x; t) dx

]
gH(t) dt 6

6 sup
t∈ΘH

[ ∫
R

φ∗
g∗(x)L(x; t) dx

]
·
∫

ΘH

gH(t) dt 6 α0 · 1.

Последнее неравенство выполнено в силу первого из условий (1.44)
и условия нормировки плотности вероятности gH( · ). Таким обра-
зом, ошибка критерия φ∗

g∗ проверки простой гипотезы ξ ∼ p̄H( · )
против простой альтернативы ξ ∼ p̄K( · ) удовлетворяет неравен-
ству ∫

R
φ∗

g∗(x)p̄H(x) dx 6 α0.

При альтернативе ξ ∼ p̄K( · ) мощность критерия φ∗
g∗∫

R
φ∗

g∗(x)p̄K(x) dx 6 β̄∗
g ,

потому что мощность β̄∗
g максимальна в силу леммы Неймана–Пир-

сона. Повторяя преобразования (1.48) для φ∗
g∗ и p̄K( · ), получаем

β̄∗
g >

∫
R

φ∗
g∗(x)p̄K(x) dx =

∫
ΘK

[ ∫
R

φ∗
g∗(x)L(x; t′) dx

]
gK(t′) dt′ >

> inf
t′∈ΘK

[ ∫
R

φ∗
g∗(x)L(x; t′) dx

]
·
∫

ΘK

gK(t′) dt′ = inf
t′∈ΘK

β∗
g∗(t

′) = β̄∗
g∗ ;

при получении последнего равенства мы учли второе соотношение
в (1.44). Теорема доказана.

Из этой теоремы напрямую вытекает следующий вывод. Рас-
смотрим задачу проверки сложной гипотезы θ ∈ ΘH против слож-
ной альтернативы θ ∈ ΘK . Будем характеризовать качество кри-
терия φ наихудшей по t ∈ ΘH локальной ошибкой первого рода
и наихудшей по t ∈ ΘK локальной мощностью:

αmax(φ) def= sup
t∈ΘH

α(t) = sup
t∈ΘH

∫
R

φ(x)L(x; t) dx,

βmin(φ) def= inf
t′∈ΘK

β(t′) = inf
t′∈ΘK

∫
R

φ(x)L(x; t′) dx.
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Можно назвать эти величины соответственно ошибкой и мощно-
стью критерия φ проверки сложной гипотезы θ ∈ ΘH против слож-
ной альтернативы θ ∈ ΘK . Зная их, мы можем контролировать
качество решения для наименее благоприятных и, следовательно,
для любых значений параметра θ. Критерий φmaxmin, такой что

βmin(φmaxmin) = max
φ

βmin(φ), αmax(φmaxmin) 6 α0,

называется максиминным критерием проверки сложной гипотезы
θ ∈ ΘH против сложной альтернативы θ ∈ ΘK с ошибкой не вы-
ше α0.

Согласно теореме 5 в классе всех критериев с ошибкой не вы-
ше α0 максимальная мощность достигается на критерии (для про-
стоты запишем нерандомизированный вариант леммы Неймана–
Пирсона)

φ(x) =

{
1, если p̄ ∗

K(x) > Cp̄ ∗
H(x),

0, если p̄ ∗
K(x) 6 Cp̄ ∗

H(x),

где C находится из уравнения∫
x : p̄ ∗

K(x)>Cp̄ ∗
H(x)

φ(x)p̄ ∗
H(x) dx = α0;

эта мощность равна ∫
x : p̄ ∗

K(x)>Cp̄ ∗
H(x)

φ(x)p̄ ∗
K(x) dx = β0.

Здесь

p̄ ∗
H(x) =

∫
ΘH

L(x; t)g∗K(t) dt, p̄ ∗
K(x) =

∫
ΘK

L(x; t′)g∗K(t′) dt′,

а распределения g∗H( · ) и g∗K( · ) на множествах значений параметра
являются наихудшими в том смысле, что для любых других рас-
пределений gH( · ) и gK( · ) мощность аналогичного критерия боль-
ше или равна β0, когда ошибка первого рода для этого критерия
не выше α0.

Таким образом, задача поиска максиминного критерия сводит-
ся к нахождению наихудших априорных распределений значений
параметра θ на множествах ΘH и ΘK . Однако нельзя сказать, что
вторая задача решается проще, чем первая.



2. Непараметрические гипотезы
В этом разделе статистическая гипотеза формулируется как

предположение о виде распределения выборки без введения какой-
либо идентификации этого распределения с помощью параметра.
Заметим, что если при этих условиях речь идёт о проверке простой
гипотезы против простой альтернативы, т. е. о выборе между дву-
мя конкретными и заранее заданными распределениями, то можно
найти НМК по лемме Неймана–Пирсона в точности так же, как
при проверке гипотезы о значении параметра. В самом деле, пусть
гипотеза заключается в том, что выборка ξ имеет плотность веро-
ятности p0( · ), альтернативную плотность вероятности обозначим
как p1( · ). Тогда (нерандомизированный) НМК с ошибкой первого
рода, равной α0, задаётся как

φ∗(x) =

{
1, если p1(x) > C0 · p0(x),
0, если p1(x) 6 C0 · p0(x),

x ∈ R,

где постоянная C0 > 0 находится из уравнения∫
R

φ∗(x)p0(x) dx = α0.

По сути дела номер k = 0, 1 в pk( · ) играет роль параметра рас-
пределения. Эта идея без труда переносится на случай сложных
гипотез и/или альтернатив, если можно как-то параметризовать
(например, пронумеровать) распределения, чтобы отличать одно
от другого. В этом случае работают все рассмотренные нами выше
методы.

Особенность задач проверки непараметрических гипотез состо-
ит в том, что в этих задачах не формулируется класс альтернатив-
ных распределений. Как мы уже отмечали, такая ситуация очень
часто складывается на практике. Исследователь обычно может бо-
лее или менее конкретно сформулировать предположение о том,
как должно, по его мнению, выглядеть распределение выборки (ги-
потеза), но не может дать ответ на вопрос о том, как будет вы-

39
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глядеть это распределение, когда предположение не выполняется
(сформулировать альтернативу).

Далее мы рассматриваем выборку ξ = (ξ1, . . . , ξn) объёма n,
где, как обычно, с.в. ξ1, . . . , ξn независимы и одинаково распреде-
лены. Распределение каждой из этих с.в. в общем случае задаётся
функцией распределения F ( · ) (в случае абсолютно непрерывного
распределения – плотностью вероятности p( · ), в случае дискрет-
ного распределения – распределением вероятностей P ( · )). Тогда
мы пишем ξ ∼ F ( · ) (ξ ∼ p( · ) или ξ ∼ P ( · ) соответственно). Заме-
тим, что эти обозначения несколько несогласованные: в формуле
ξ ∼ F ( · ) с.в. имеет размерность n, а F ( · ) – функция одномерного
распределения. Но, поскольку все элементы выборки имеют одно
и то же распределение, это не приведёт к недоразумениям. Мож-
но сказать, что в данном случае значок ∼ заменяет слова «есть
выборка из распределения, заданного функцией».

2.1. Критерии согласия
Всюду далее мы рассматриваем простую гипотезу (её часто на-

зывают нулевой)
H : ξ ∼ F0( · ). (2.1)

Решение задачи проверки гипотезы ξ ∼ F0( · ) опирается на про-
верку «удалённости» эмпирического распределения от теоретиче-
ского. Введём функционал d( · ) со значениями в R+ = {x > 0},
в каком-либо смысле характеризующий расстояние между двумя
произвольными функциями, действующими из R в R. Если этот
функционал удовлетворяет определённым аксиомам (которые в на-
шем курсе несущественны), то он называется метрикой. Наиболее
часто используются следующие метрики: равномерная

d∞(F1, F2) = sup
x∈R

∣∣F1(x) − F2(x)
∣∣, (2.2)

квадратичная или евклидова

d2(F1, F2) =

√∫
R

(
F1(x) − F2(x)

)2
dx, (2.3)

а также метрика

d1(F1, F2) =
∫

R

∣∣F1(x) − F2(x)
∣∣ dx. (2.4)
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В математической статистике эти метрики (при некоторой их моди-
фикации) используются для определения расстояния между функ-
циями распределения или плотностями вероятности.

Для любой выборки ξ = (ξ1, . . . , ξn) мы можем найти выбороч-
ную функцию распределения,

F ∗(x) =
1
n

n∑
j=1

I(−∞,x)(ξj) =
νξ(x)

n
, x ∈ R, (2.5)

где I(−∞,x) – индикатор множества (−∞, x) и νξ(x) – с.в., равная
количеству элементов выборки ξ, попавших в полубесконечный ин-
тервал (−∞, x). Можно сказать, что F0( · ) – теоретическая функ-
ция распределения выборки, а F ∗( · ) – эмпирическая функция рас-
пределения.

Замечание 5. Следует помнить, что в F ∗(x) аргумент x неслуча-
ен, x ∈ R, но само значение F ∗(x) есть с.в., которая зависит от n-
мерной выборки, т. е. по сути дела

F ∗(x) = Ψ(ξ1, . . . , ξn; n; x), (2.6)

где случайность величины Ψ определяется её зависимостью от ξ,
а x ∈ R и n ∈ N выступают как параметры этой с.в. Нетрудно
найти распределение с.в. Ψ при фиксированном x: очевидно, что

P

(
Ψ =

m

n

)
= P (νξ(x) = m) = Cm

n pm(1 − p)n−m, m = 0, 1, . . . , n,

(2.7)
где p = P (ξk < x) = F (x) есть значение функции распределения
выборки в точке x. Таким образом, F ∗(x) ∼ 1

nB(n, p) с p = F (x).

Если мы каким-то образом введём расстояние d(F0, F
∗) меж-

ду F0( · ) и F ∗( · ), то в силу зависимости функции F ∗( · ) от вы-
борки ξ получим, что значение расстояния случайно, и при фик-
сированной гипотезе мы можем записать d(F0, F

∗) = δ(ξ). Разумно
выбирать такие функционалы расстояния, чтобы δ(ξ) полностью
определялась выборкой (при фиксированной гипотезе) и была с.в.,
т. е. являлась статистикой. По смыслу расстояния с вероятностью
единица должно выполняться неравенство δ(ξ) > 0.

Желательно, чтобы расстояние δ(ξ) удовлетворяло следующе-
му естественному требованию: когда гипотеза неверна, вероятность
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P (δ(ξ) > C) должна быть достаточно велика по сравнению с ве-
роятностью P0(δ(ξ) > C) при верной гипотезе. Это означает, что
если гипотеза верна, то теоретическая и эмпирическая функция
с большой вероятностью расположены рядом в смысле введённого
расстояния, а если гипотеза неверна, то мы можем скорее ожидать
большие значения этого расстояния, чем малые.

Мы будем строить нерандомизированные критерии, зависящие
от выборки через статистику δ(ξ) следующим образом:

φ(x) =

{
1, если δ(x) > C0,

0, если δ(x) 6 C0.
(2.8)

Постоянная C0 должна определяться из условия малости ошибки
первого рода – вероятности отклонить гипотезу ξ ∼ F0( · ), когда
гипотеза верна. Если α0 – приемлемый размер ошибки, то, решая
относительно C > 0 уравнение

α0 = P0(δ(ξ) > C) =
∫

x : δ(x)>C

dF0(x), (2.9)

получаем искомый критерий. Он называется критерием согласия
(с гипотезой ξ ∼ F0( · )).

Критерии согласия почти всегда носят асимптотический харак-
тер: точные утверждения об их свойствах справедливы при n → ∞,
где n – размерность выборки. Для предельного при n → ∞ распре-
деления с.в. δ(ξ) при верной гипотезе находим постоянную C из
уравнения

α0 = Plim(δ(ξ) > C), (2.10)

где вероятность Plim отвечает этому предельному распределению,
и получаем критерий согласия. Он отклоняет гипотезу всякий раз,
когда δ(ξ) > C, и имеет в пределе n → ∞ ошибку α0. Для мно-
гих известных критериев согласия часто можно получить важный
асимптотический результат о поведении мощности критерия: при
n → ∞ мощность критерия, заданного формулами (2.8), (2.10),
стремится к единице для любой альтернативы F ̸= F0.

Критерий Колмогорова. Пусть H : ξ ∼ F0( · ). Будем опи-
раться на расстояние (2.2) между теоретической и эмпирической
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функциями распределения и рассмотрим статистику, отличающу-
юся от (2.2) только числовым множителем:

δn(ξ) =
√

n sup
x∈R

∣∣F0(x) − F ∗(x)
∣∣. (2.11)

Она называется статистикой Коломогорова.

Замечание 6. Множитель
√

n вводится для того, чтобы при вер-
ной гипотезе в пределе n → ∞ статистика δn(ξ) имела нетривиаль-
ное распределение. Можно показать, что без этого множителя

sup
x∈R

∣∣F0(x) − F ∗(x)
∣∣ P−→ 0, n → ∞.

Это утверждение следует из того, что, как мы отмечали в замеча-
нии 5, F ∗(x) ∼ 1

nB(n, p), следовательно, при верной гипотезе

MF ∗(x) = p = F0(x), DF ∗(x) =
pq

n
→ 0, n → ∞,

поэтому
∣∣F0(x) − F ∗(x)

∣∣ P−→ 0 при n → ∞ для любого фиксиро-
ванного x. Умножение на

√
n обеспечивает ненулевую и конечную

дисперсию предельного распределения.

А.Н. Колмогоров нашёл предельное распределение статисти-
ки δn(ξ). Оказалось, что оно является одним и тем же для любой
функции распределения и не зависит ни от каких параметров. Те-
перь это распределение называют распределением Колмогорова.

Теорема 6 (Колмогорова). Пусть функция F0( · ) не имеет раз-
рывов и Dn(y) = P0(δn(ξ) < y), y > 0, – функция распределения
статистики (2.11) при верной гипотезе для фиксированного n.
Тогда для любого фиксированного y > 0

Dn(y) −→
n→∞

∞∑
k=−∞

(−1)ke−k2y2 def= K(y).

Значения функции K(y), y > 0, представлены во многих ру-
ководствах по математической статистике и вычислительных про-
граммах.
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Критерий φ, зависящий от выборки через статистику δn(ξ) и за-
данный как

φ(x) =

{
1, если δn(x) > C0,

0, если δn(x) 6 C0,
x ∈ Rn, (2.12)

где C0 находится из уравнения∫
y>C0

K(y) dy = α0, (2.13)

называется критерием Колмогорова проверки непараметрической
гипотезы ξ ∼ F0( · ) с (асимптотической при n → ∞) ошибкой α0.

Докажем, что мощность этого критерия для любой альтерна-
тивы стремится к единице при n → ∞.

Теорема 7. Пусть ξ ∼ F1( · ), где F1( · ) – какая-либо функция
распределения, не совпадающая с F0( · ) в том смысле, что

sup
x∈R

∣∣F0(x) − F1(x)
∣∣ ̸= 0. (2.14)

Тогда для любого фиксированного C > 0

βn
def= P1(δn(ξ) > C) −→

n→∞
1. (2.15)

В (2.15), как обычно, нижний индекс P1 означает, что веро-
ятность рассчитывается для ξ ∼ F1( · ), и отмечена зависимость
мощности от n, т. е. от размера выборки.

Доказательство . При условии (2.14) найдётся x0 ∈ R, такой что∣∣F0(x0) − F1(x0)
∣∣ = ∆0 > 0.

C другой стороны, если ξ ∼ F1( · ), то имеется сходимость по веро-
ятности F ∗(x0)

P1−→
n→∞

F1(x0), следовательно,

∣∣F0(x0) − F ∗(x0)
∣∣ P1−→

n→∞

∣∣F0(x0) − F1(x0)
∣∣ = ∆0

(напомним, что в этих предельных переходах x0 ∈ R фиксирован,
а F ∗(x0) – с.в., зависящая от n-мерной выборки ξ, см. формулу (2.5)
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и замечание 5). Перепишем в развёрнутом виде последний предел:
для любого ε > 0

P1

(∣∣∣ ∣∣F0(x0) − F ∗(x0)
∣∣ − ∆0

∣∣∣ < ε
)

=

= P1

(
∆0 − ε <

∣∣F0(x0) − F ∗(x0)
∣∣ < ∆0 + ε

)
−→
n→∞

1. (2.16)

Выберем и зафиксируем положительное ε < ∆0. Введём три после-
довательности случайных событий

An =
{

ξ : ∆0 − ε <
∣∣F0(x0) − F ∗(x0)

∣∣ < ∆0 + ε
}

,

Bn =
{

ξ :
∣∣F0(x0) − F ∗(x0)

∣∣ > ∆0 − ε
}

,

Cn =
{

ξ : sup
x∈R

∣∣F0(x) − F ∗(x)
∣∣ > ∆0 − ε

}
.

Здесь n = 1, 2 . . . , а зависимость от n-мерной выборки ξ содержится
в с.в. F ∗(x0) и F ∗(x). Очевидно, что An влечёт Bn, а Bn влечёт Cn.
Поэтому

P1(An) 6 P1(Bn) 6 P1(Cn) 6 1.

Поскольку P1(An) → 1 при n → ∞ в силу (2.16), мы получаем
P1(Cn) → 1 при n → ∞.

Итак, существует число ∆1 = ∆0−ε > 0, определяющееся толь-
ко параметром ∆0, т. е. функциями распределения F1( · ) и F0( · ),
такое что

P1

(
sup
x∈R

∣∣F0(x) − F ∗(x)
∣∣ > ∆1

)
−→
n→∞

1.

Статистика Колмогорова δn(ξ) отличается от точной верхней грани
в последнем соотношении только множителем

√
n, поэтому

P1

(
δn(ξ) >

√
n∆1

)
= P1

(√
n sup

x∈R

∣∣F0(x) − F ∗(x)
∣∣ >

√
n∆1

)
−→
n→∞

1.

Нам осталось переписать полученный предел в терминах мощ-
ности (2.15) критерия Колмогорова. Пусть C > 0 фиксировано.
Найдём и зафиксируем натуральное N1, такое что

√
N1∆1 > C.

Тогда для любого n > N1 мы имеем цепочку следствий

δn(ξ) >
√

n∆1 =⇒ δn(ξ) >
√

N1∆1 =⇒ δn(ξ) > C,
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откуда P1(δn(ξ) > C) > P1(δn(ξ) >
√

n∆1) и

lim
n→∞

βn = lim
n→∞

P1(δn(ξ) > C) = lim
n→∞,
n>N1

P1(δn(ξ) > C) >

> lim
n→∞,
n>N1

P1(δn(ξ) >
√

n∆1) = 1. (2.17)

Поскольку βn 6 1 для любого n, получаем утверждение теоремы.

Критерий хи-квадрат (Пирсона). Этот критерий, пожалуй,
используется наиболее часто. Для его использования выборочные
данные группируют, разбивая множество R на r непересекающих-
ся подмножеств ∆Xk, k = 1, . . . , r (как правило, в качестве этих
подмножеств выбирают интервалы), и подсчитывают количество
элементов выборки, попавших в каждое из ∆Xk:

νk = νk(ξ) =
n∑

j=1

I∆Xk
(ξj), k = 1, . . . , r,

r∑
k=1

νk = n. (2.18)

Замечание 7. Статистика ν = (ν1, . . . , νr) имеет полиномиаль-
ное распределение: для m = (m1, . . . , mr), где m1 > 0, . . . , mr > 0
и m1 + · · · + mr = n,

P (ν = m) = P (ν1 = m1, . . . , νr = mr) =
n!

m1! . . . , mr!
pm1
1 . . . pmr

r .

Здесь pk = P (ξj ∈ ∆Xk), k = 1, . . . , r, для любой с.в. ξj из выборки
ξ = (ξ, . . . , ξn) и, конечно, p1 + · · · + pr = 1.

Вернёмся к проверке гипотезы ξ ∼ F0( · ). Введём обозначение
pk = P0(ξj ∈ ∆Xk) для k = 1, . . . , r и любого фиксированного
j = 1, . . . , n. Поскольку ξ1, . . . , ξn одинаково распределены, вероят-
ность pk не зависит от j. Из с.в. νk(ξ), заданных в (2.18), и вероят-
ностей pk составим статистику

χ2(ξ) =
r∑

k=1

(νk(ξ) − npk)2

npk
. (2.19)

Для простоты последующих формул опустим зависимость от ξ
и будем писать

χ2 =
r∑

k=1

(νk − npk)2

npk
. (2.20)
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Часто можно встретить другие формы записи статистики хи-
квадрат:

χ2 =
r∑

k=1

(Ok − Ek)2

Ek
= n

r∑
k=1

(νk/n − pk)2

pk
. (2.21)

В первой сумме просто введены обозначения Ok = νk и Ek =
npk для наблюдаемого (observed) количества попаданий в интер-
вал ∆Xk и для его математического ожидания (expectation). Вто-
рая сумма получается после тривиальных алгебраических преоб-
разований статистики (2.20) и показывает, что χ2 контролирует
определённым образом заданное расстояние между эмпирическими
частотами νk/n и теоретическими вероятностями pk, k = 1, . . . , r.

Справедлива следующая теорема.

Теорема 8. Если гипотеза ξ ∼ F0( · ) верна, то при n → ∞ рас-
пределение статистики (2.19) стремится к распределению хи-
квадрат с r − 1 степенями свободы.

Проведём доказательство в простейшем случае r = 2.

Доказательство . Поскольку ν1 + · · · + νr = n и p1 + · · · + pr = 1,
в данном случае имеем ν2 = n − ν1 и p2 = 1 − p1. Тогда

χ2 =
(ν1 − np1)2

np1
+

(ν2 − np2)2

np2
=

=
(ν1 − np1)2

np1
+

(n − ν1 − n(1 − p1))2

n(1 − p1)
=

=
(1 − p1)(ν1 − np1)2 + p1(ν1 − np1)2

np1(1 − p1)
=

(ν1 − np1)2

np1(1 − p1)
.

При этом ν1 = ν1(ξ) =
∑n

j=1 I∆X1(ξj), где с.в. I∆X1(ξ1), . . . , I∆X1(ξn)
независимы, одинаково распределены,

P0(I∆X1(ξj) = 1) = P0(ξj ∈ ∆X1) = p1, P0(I∆X1(ξj) = 0) = 1 − p1,

таким образом, MI∆X1(ξj) = p1 и DI∆X1(ξj) = p1(1 − p1). Для
краткости обозначив I∆X1(ξj) просто как Ij , имеем

(ν1 − np1)2

np1(1 − p1)
=

( n∑
j=1

Ij − MIj√
n · DIj

)2

.



48 ГЛАВА 2. НЕПАРАМЕТРИЧЕСКИЕ ГИПОТЕЗЫ

По центральной предельной теореме имеется сходимость по рас-
пределению

n∑
j=1

Ij − MIj√
n · DIj

d−→
n→∞

ν∗ ∼ N(0, 1).

Отсюда тривиальным образом получаем, что для любого y > 0

P0

(
(ν1 − np1)2

np1(1 − p1)
< y

)
= P0

(∣∣∣∣ n∑
j=1

Ij − MIj√
n · DIj

∣∣∣∣ <
√

y

)
−→
n→∞

−→
n→∞

P ( |ν∗| <
√

y ) = P (ν2
∗ < y) = Fχ2

1
(y),

где Fχ2
1
( · ) – функция распределения хи-квадрат с одной степенью

свободы. Теорема доказана.

Доказательство для общего r основано на тех же идеях, но тех-
нически более сложное.

Критерий хи-квадрат или, иначе, критерий Пирсона задаётся
как следующий критерий φ, зависящий от выборки через стати-
стику χ2 = χ2(ξ) и обладающий (асимптотической при n → ∞)
ошибкой α0:

φ(x) =

{
1, если χ2(x) > C0,

0, если χ2(x) 6 C0,
x ∈ Rn, (2.22)

где C0 находится из уравнения∫
y>C0

pχ2
r−1

(y) dy = α0. (2.23)

В критерии (2.22) статистика χ2(ξ) определяется формулами (2.19),
(2.18), а pχ2

r−1
( · ) – плотность вероятности для распределения хи-

квадрат с r − 1 степенями свободы.
Заметим, что критерий хи-квадрат в сущности проверяет не

гипотезу ξ ∼ F0( · ), а тот факт, что

pk = P0(ξ ∈ ∆Xk) =
∫

x∈∆Xk

dF0(x), k = 1, . . . , r. (2.24)

В частности, если мы имеем другое распределение, ξ ∼ F ( · ), но
P (ξ ∈ ∆Xk) = pk для всех k = 1, . . . , r, то с помощью критерия



2.1. КРИТЕРИИ СОГЛАСИЯ 49

хи-квадрат такое распределение неотличимо от исходного. Поэто-
му говорить о мощности этого критерия можно только для тех
альтернатив ξ ∼ F ( · ), у которых вектор вероятностей

p′ = ⟨p′1, . . . , p′r⟩, p′k =
∫

x∈∆Xk

dF (x), k = 1, . . . , r,

не совпадает с вектором p = ⟨p1, . . . , pr⟩, заданным в (2.24).
Справедлива теорема, аналогичная теореме (7).

Теорема 9. Пусть для гипотезы вектор p = ⟨p1, . . . , pr⟩ не совпа-
дает с вектором p′ = ⟨p′1, . . . , p′r⟩ для альтернативы в том смысле,
что pk0

≠ p′k0
хотя бы при одном k0. Тогда для любого фиксиро-

ванного C > 0

βn
def= P ′

( r∑
k=1

(νk − npk)2

npk
> C

)
−→
n→∞

1. (2.25)

В (2.25) вероятность P ′( · ) рассчитывается при условии, что
вектор ν = ⟨ν1, . . . , νr⟩ эмпирических частот имеет полиномиаль-
ное распределение (см. замечание 7), отвечающее альтернативе,
т. е. P ′(ξj ∈ ∆Xk) = p′k для k = 1, . . . , r и любой с.в. ξj из выборки ξ.
Зависимость от n скрыта, в том числе, в зависимости νk = νk(ξ) от
выборки ξ = (ξ, . . . , ξn).

Доказательство . Предположим, что верна альтернатива. Часто-
та сходится к вероятности:

νk0

n

P ′
−→
n→∞

p′k0
,

(νk0/n − pk0)
2

pk0

P ′
−→
n→∞

(p′k0
− pk0

)2

pk0

def= ∆X0 > 0.

Далее, учитывая цепочку следствий∣∣∣∣(νk0/n − pk0)
2

pk0

− ∆X0

∣∣∣∣ < ε ⇐⇒

⇐⇒ ∆X0 − ε <
(νk0/n − pk0)

2

pk0

< ∆X0 + ε =⇒

=⇒ (νk0/n − pk0)
2

pk0

> ∆X0 − ε = ∆X1 =⇒

=⇒
r∑

k=1

(νk/n − pk)2

pk
> ∆X1
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и представляя статистику хи-квадрат как χ2 = n
r∑

k=1

(νk/n−pk)2

pk
, по-

лучаем

P ′(χ2 > n∆X1) = P ′
( r∑

k=1

(νk/n − pk)2

pk
> ∆X1

)
>

> P ′
(∣∣∣∣(νk0/n − pk0)

2

pk0

− ∆X0

∣∣∣∣ < ε

)
−→
n→∞

1.

Отсюда аналогично (2.17) имеем βn → 1.

При достаточно мелком разбиении на интервалы ∆X1, . . . , ∆Xr

мы можем считать, что p1, . . . , pr при больших r достаточно хоро-
шо описывают распределение гипотезы ξ ∼ F0( · ). Но при фик-
сированном размере n нашей выборки, может случиться так, что
в интервал ∆Xk попадает мало элементов выборки, и тогда частота
νk/n может сильно отличаться от вероятности (2.24) даже в случае
верной гипотезы. Это приведёт к большому значению статистики
хи-квадрата и к отклонению гипотезы.

Критерий хи-квадрат при наличии мешающих парамет-
ров. Мы знаем, что распределения часто зависят от некоторых па-
раметров, которые исследователю неизвестны. Если нас по-преж-
нему интересует общий вид распределения, а не значения парамет-
ров, то мы получаем сложную гипотезу

H : ξ ∼ F0( · ; θ), θ = (θ1, . . . , θm) ∈ Θ ⊂ Rm, (2.26)

в которой параметр θ исследователя не интересует, но увеличивает
сложность решаемой задачи. Поэтому этот параметр часто назы-
вают мешающим. Например, требуется проверить предположение,
что выборка распределена нормально, ξ ∼ N(µ, σ2) с какими-либо
значениями µ и σ2.

При проверке сложной гипотезы (2.26) нам придётся учесть,
что статистика хи-квадрат приобретает зависимость от θ:

χ2 = χ2(ξ; θ) =
r∑

k=1

[νk(ξ) − npk(θ)]2

npk(θ)
, (2.27)

pk(θ) =
∫

x∈∆k

dF0(x; θ), k = 1, . . . , r. (2.28)
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Естественная идея решения этой проблемы – сначала получить
оценку θ̂ = θ̂(ξ) значения параметра имеющейся выборке, а потом
применить критерий хи-квадрат, в котором гипотетические вероят-
ности рассчитываются при θ = θ̂. Однако в этом случае найти рас-
пределение статистики (2.27) и, следовательно, вычислить ошибки
критерия гораздо труднее, чем при отсутствии мешающего пара-
метра: χ2 зависит от выборки ξ не только через с.в. ν1, . . . , νr, но
и через оценку параметра θ̂.

При определённых условиях на гладкость функций pk(θ), θ ∈ Θ,
справедлива следующая теорема (Фишера).

Теорема 10. Пусть в задаче проверки гипотезы (2.26) с m-мер-
ным параметром θ ∈ Θ оценка параметра θ∗(ξ) определяется как
точка минимума статистики хи-квадрат для каждой реализа-
ции ξ = (x1, . . . , xn),

χ2(x1, . . . , xn; θ∗) = min
θ∈Θ

χ2(x1, . . . , xn; θ). (2.29)

Если гипотеза (2.26) верна, то при n → ∞ распределение стати-
стики

χ2(ξ; θ∗) =
r∑

k=1

[νk(ξ) − npk(θ∗)]2

npk(θ∗)
, θ∗ = θ∗(ξ),

стремится к распределению хи-квадрат с r − 1 − m степенями
свободы.

Доказательство теоремы математически очень глубокое и весь-
ма непростое технически, поэтому мы его не приводим, но можем
сделать некоторые выводы.

Мы видим, что асимптотическое распределение статистики χ2

по-прежнему есть распределение хи-квадрат, но поменялось число
степеней свободы. В простой гипотезе без параметра θ число сте-
пеней свободы было равно r− 1. Одна степень свободы «пропала»,
потому что с.в. ν1, . . . , νr не меняются независимо, а подчинены
условию ν1 + · · ·+ νr = n. Когда m параметров θ1, . . . , θm оценива-
ется по выборке, мы «теряем» ещё m степеней свободы и получаем
число степеней свободы r − 1 − m.
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Критерий хи-квадрат проверки гипотезы (2.26) теперь можно
задать как

φ(x) =

{
1, если χ2(x; θ∗) > C0,

0, если χ2(x; θ∗) 6 C0,
x ∈ Rn,∫

y>C0

pχ2
r−1−m

(y) dy = α0.

Решение задачи на минимум (2.29) может оказаться сложным
и, как правило, получается численными методами. При достаточно
гладких функциях pk(θ), θ ∈ Θ, нам требуется решить систему
уравнений

−n

2
∂χ2

∂θj
=

r∑
k=1

(
νk − npk(θ)

pk(θ)
+

[νk − npk(θ)]2

p2
k(θ)

)
∂pk(θ)

∂θj
= 0, (2.30)

где j = 1, . . . , m.
Строго говоря, в уравнениях (2.30) следует писать nk вместо

с.в. νk = νk(ξ), где неотрицательные целые числа nk, k = 1, . . . , r,
удовлетворяют условию n1 + · · · + nr = n и тогда определяют реа-
лизацию с.в. ν = (ν1, . . . , νr). Однако, чтобы не вводить новые обо-
значения, далее мы пишем νk, имея в виду, что уравнения должны
быть выполнены для любой фикисированниой реализации с.в. ν,
т. е. с вероятностью единица при любом распределении выборки ξ.

Если ξ ∼ F0( · ; θ), то νk ≈ npk(θ) при больших n, точнее, мы
можем утверждать, что Pθ(|νk/n− pk(θ)| < ε) стремится к единице
при n → ∞ для любого ε > 0). Тогда вторым, квадратичным по
νk − npk(θ), слагаемым в высоких круглых скобках в (2.30) можно
пренебречь по сравнению с первым, линейным νk − npk(θ). Полу-
чаем систему

r∑
k=1

νk − npk(θ)
pk(θ)

∂pk(θ)
∂θj

= 0, j = 1, . . . , m. (2.31)

Заметим, что p1(θ) + · · · + pk(θ) = 1 для любого θ ∈ Θ, поэтому

r∑
k=1

npk(θ)
pk(θ)

∂pk(θ)
∂θj

= n
r∑

k=1

∂pk(θ)
∂θj

= n
∂

∂θj

r∑
k=1

pk = n
∂

∂θj
1 = 0,



2.1. КРИТЕРИИ СОГЛАСИЯ 53

и последняя система превращается в
r∑

k=1

νk

pk(θ)
∂pk(θ)

∂θj
= 0, j = 1, . . . , m.

Её можно переписать как
r∑

k=1

∂

∂θj
ln[pk(θ)]νk =

∂

∂θj
ln

( r∏
j=1

[pk(θ)]νk

)
= 0,

где j = 1, . . . , m. Эта система эквивалента системе уравнений мак-
симального правдоподобия

∂

∂θj
ln L(ν; θ) = 0, j = 1, . . . , m, (2.32)

когда L( · ; θ) – функция правдоподобия полиномиального распре-
деления с.в. ν:

L(n1, . . . , nr; θ) = Pθ(ν1 = n1, . . . , νr = nr) =

=
n1! . . . nr!

n!
[p1(θ)]n1 . . . [pr(θ)]nr

для nk > 0, k = 1, . . . , r, с условием n1 + · · · + nr.
Таким образом, если обосновать замену системы (2.30) на си-

стему (2.32), мы можем искать оценку мешающего параметра θ как
оценку θ̂ = θ̂(ν) максимально правдоподобия статистики ν = ν(ξ).
Теорема Фишера с заменой θ∗ на θ̂ остаётся справедливой.

Критерий омега-квадрат. Существует много других крите-
риев согласия. Некоторые из них представляют собой модифика-
ции и уточнения критериев Коломогорова и хи-квадрат, некоторые
основаны на статистиках, которые также контролируют расстоя-
ние между теоретическими и эмпирическими вероятностями, но
отличаются от статистик Колмогорова и хи-квадрат. Один из та-
ких критериев – это критерий омега-квадрат, который также назы-
вают критерием Крамера–Мизеса–Смирнова. Рассмотрим его по-
дробнее.

Пусть ξ = (ξ1, . . . , ξn) – выборка, как обычно, составленная из
независимых одинаково распределённых с.в. Пусть F ( · ) – одномер-
ная функция распределения любого элемента выборки, а F ∗( · ) –
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выборочная функция распределения, полученная по выборке объё-
ма n. Введём статистику, основанную на интегральной квадратич-
ной метрике:

ω2 = n

∫ ∞

−∞
[F (x) − F ∗(x)]2 dF (x). (2.33)

Её можно привести к более удобному для расчётов виду. Предпо-
ложим, что значения выборки, полученные в эксперименте, суть
ξ1 = x1, . . . , ξn = xn и упорядочим их по возрастанию (построим
вариационный ряд), члены которого обозначим стандартным обра-
зом как x(k), k = 1, . . . , n. Если F ( · ) непрерывна в каждой точке,
то P (ξi = ξj) = 0 для любых i ̸= j. Тогда мы можем считать, что
члены вариационного ряда строго возрастают,

x(1) < · · · < x(n).

После этого легко записать выборочную функцию распределения:

F ∗(x) =


0, x 6 x(1),

k/n, x(k) < x 6 x(k+1), k = 1, . . . , n − 1,

1, x > x(n).

(2.34)

Теперь найдём интеграл в (2.33):

I =
∫ ∞

−∞
[F (x) − F ∗(x)]2 dF (x) =

∫ ∞

−∞
F 2(x) dF (x) −

− 2
∫ ∞

−∞
F (x)F ∗(x) dF (x) +

∫ ∞

−∞
[F ∗(x)]2 dF (x) =

= I0 − 2I1 + I2.

Для I0 с учётом F (−∞) = 0, F (∞) = 1 имеем

I0 =
∫ ∞

−∞
F 2(x) dF (x) =

1
3
F 3(x)

∣∣∣∣∞
−∞

=
1
3
. (2.35)

Чтобы найти I1, разобьём область интегрирования на интервалы
точками x(k), k = 1, . . . , n, и подставим (2.34). Получим

I1 =
n−1∑
k=1

k

n

∫ x(k+1)

x(k)

F (x) dF (x) +
∫ ∞

x(n)

F (x) dF (x) =

=
1
2n

n−1∑
k=1

k(F 2
k+1 − F 2

k ) + 1 − 1
2
F 2

n ,
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где введено краткое обозначение F (x(k)) = Fk, k = 1, . . . , n. Найдём
сумму в правой части:

n−1∑
k=1

k(F 2
k+1 − F 2

k ) =
n−1∑
k=1

(
(k + 1)F 2

k+1 − kF 2
k

)
−

n−1∑
k=1

F 2
k+1 =

=
n−1∑
k=1

(k + 1)F 2
k+1 −

n−1∑
k=1

kF 2
k −

n∑
k=2

F 2
k .

Мы видим, что в разности первой и второй суммы все слагаемые,
кроме крайних, сокращаются,

n−1∑
k=1

(k + 1)F 2
k+1 −

n−1∑
k=1

kF 2
k = nF 2

n − 1 · F 2
1 ,

в результате для I1 получаем

I1 =
1
2n

· nF 2
n − 1

2n
· F 2

1 − 1
2n

n∑
k=2

F 2
k + 1 − 1

2
F 2

n .

Первое и последнее слагаемые в правой части сокращаются, а вто-
рое можно включить в сумму. Итак, получаем

I1 = 1 − 1
2n

n∑
k=1

F 2
k . (2.36)

Интеграл I2 вычисляется аналогично:

I2 =
n−1∑
k=1

k2

n2

∫ x(k+1)

x(k)

dF (x) +
∫ ∞

x(n)

dF (x) =

=
1
n2

n−1∑
k=1

k2(Fk+1 − Fk) + 1 − Fn =

=
1
n2

( n−1∑
k=1

(
(k + 1)2(Fk+1 − Fk) −

n−1∑
k=1

(2k + 1)Fk+1

)
+ 1 − Fn =

=
1
n2

(n2Fn − 12 · F1) −
1
n2

n−1∑
k=1

(2k + 1)Fk+1 + 1 − Fn.
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После сокращения членов ±Fn и замены индекса суммирования k
на k − 1 окончательно получаем

I2 = 1 − 1
2n

− 1
n2

n−1∑
k=1

(2k − 1)Fk. (2.37)

Собирая результаты (2.35)–(2.37), имеем

I =
1
3
− 1 +

1
n

n∑
k=1

F 2
k + 1 − 1

2n
− 1

n2

n−1∑
k=1

(2k − 1)Fk =

=
1
3

+
1
n

n∑
k=1

(
F 2

k − 2k − 1
n

Fk

)
.

В принципе это уже достаточно удобное для расчёта выражение, но
мы можем привести его ещё более компактному и наглядному виду,
если дополним выражение в высоких круглых скобках до полного
квадрата,

I =
1
3

+
1
n

n∑
k=1

(
Fk − 2k − 1

2n

)2

− 1
n

n∑
k=1

(
2k − 1

2n

)2

, (2.38)

и вычислим в явном виде последнюю сумму:

n∑
k=1

(
2k − 1

2n

)2

=
1
n2

n∑
k=1

(
k − 1

2

)2

=

=
1
n2

( n∑
k=1

k2 −
n∑

k=1

k +
1
4

n∑
k=1

1
)

=

=
1
n2

(
n(n + 1)(2n + 1

6
− n(n − 1)

2
+

n

4

)
=

=
1
n2

4n3 + n

12
=

n

3
+

1
12n

.

Подставим этот результат в (2.38) и получим

I =
1

12n2
+

1
n

n∑
k=1

(
Fk − 2k − 1

2n

)2

. (2.39)
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Если посмотреть внимательно на слагаемые суммы, то мы увидим,
что выражение в высоких круглых скобках равно

F (x(k)) −
1
2

(
k − 1

n
+

k

n

)
= F (x(k)) −

F ∗(x(k−1)) + F ∗(x(k))
2

(считаем, что F (x(0)) = 0), таким образом, интеграл I контро-
лирует расстояние между значением теоретической функции рас-
пределения и среднего арифметического двух соседних значений
выборочной функции. Если распределение выборки действительно
описывается непрерывной функцией F ( · ), то эта разность должна
быть мала при больших n.

Статистика омега-квадрат (2.33) записывается следующим об-
разом:

ω2 = ω2(ξ) =
1

12n
+

n∑
k=1

(
F (ξ(k)) −

2k − 1
2n

)2

, (2.40)

где ξ(1) < · · · < ξ(n) есть вариационный ряд выборки. Поиск рас-
пределения этой статистики в случае ξ ∼ F ( · ) является сложной
задачей, но его асимптотика при n → ∞ известна, она не зависит
от распределения выборки. Это даёт основания сформулировать
критерий стандартным образом:

φ(x) =

{
1, если ω2(x) > C0,

0, если ω2(x) 6 C0,
x ∈ Rn,∫

y>C0

pω2(y) dy = α0.

Здесь pω2( · ) – асимптотическая плотность вероятности статистики
омега-квадрат (2.40), когда n → ∞ и ξ ∼ F ( · ).

По сравнению с критерием хи-квадрат критерий омега-квадрат
обладает тем преимуществом, что не требует группировки данных
по r интервалам разбиения, но он значительно более вычислитель-
но затратный, поскольку необходимо упорядочить элементы вы-
борки, что при больших её объёмах может потребовать значитель-
ных ресурсов.

Подведём итог. Помимо рассмотренных нами подробно класси-
ческих критериев Колмогорова, Пирсона (хи-квадрат) и Крамера–
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Мизеса–Смирнова (омега-квадрат) имеется много других критери-
ев согласия. Некоторые из них представляют собой просто уточ-
нение или модификацию классических критериев, некоторые осно-
ваны на новых статистиках. Все эти критерии определяются ста-
тистиками, так или иначе контролирующими расхождение меж-
ду теоретическими и эмпирическим вероятностями. Статистики
должны вести себя «правильно», т. е. иметь известное распределе-
ние в случае верной гипотезы и принимать преимущественно боль-
шие значения, если гипотеза неверна. Эти свойства, как правило,
носят асимптотический характер: они хорошо работают при боль-
ших объёмах выборки, на практике их обычно используют, если
объём выборки n & 50.

2.2. Критерии однородности
Критерии однородности служат для проверки гипотез о совпа-

дении распределений или параметров распределений нескольких
(в простейшем случае двух) независимых выборок. Такие задачи
возникают при проверке предположения о том, что на одну вы-
борку оказано некоторое воздействие, в другой, контрольной, это
воздействие отсутствует. Предполагается, что воздействие изменя-
ет распределение первой выборки по сравнению с распределением
контрольной выборки.

Сначала рассмотрим две задачи проверки гипотез о совпадении
параметров распределений.

Критерий Стьюдента. Предположим, что даны две незави-
симые выборки ξ = (ξ1, . . . , ξn) и ξ′ = (ξ′1, . . . , ξ

′
m), где n,m > 1.

Независимость выборок означает, что ξ и ξ′ – независимые мно-
гомерные с.в. и, как обычно, мы предполагаем, что с.в., состав-
ляющие каждую выборку в отдельности, независимы и одинаково
распределены.

Пусть с.в. ξi, i = 1, . . . , n, имеют нормальное распределение со
средним µ, а с.в. ξ′j , j = 1, . . . , m, имеют нормальное распределе-
ние со средним µ′. Дисперсию σ2 мы считаем одинаковой для обе-
их выборок, но неизвестной. Поставим задачу проверки гипотезы
о равенстве средних:

H : µ = µ′, K : µ ̸= µ′.
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Введём обозначения для выборочных средних и дисперсии:

ξ̄ =
1
n

n∑
i=1

ξi, ξ̄ ′ =
1
m

m∑
j=1

ξ′i,

σ̂2
n =

1
n − 1

n∑
i=1

(ξi − ξ̄ )2, σ̂2
m =

1
m − 1

m∑
j=1

(ξ′j − ξ̄ ′)2.

(2.41)

Напомним также, что выборочные дисперсии можно преобразовать
как

σ̂2
n =

1
n − 1

n∑
i=1

(ξi − ξ̄ )2 =
1

n − 1

( n∑
i=1

ξ2
i − 2ξ̄

n∑
i=1

ξi + n(ξ̄ )2
)

=

=
1

n − 1

( n∑
i=1

ξ2
i − 2n(ξ̄ )2 + n(ξ̄ )2

)
=

1
n − 1

n∑
i=1

(ξ2
i − (ξ̄ )2)

и аналогично

σ̂2
m =

1
m − 1

m∑
j=1

(ξ′j − ξ̄ ′)2 =
1

m − 1

m∑
j=1

((ξ′j)
2 − (ξ̄ ′)2).

Также введём обозначения

o

ξi =
ξi − µ√

σ2
, i = 1, . . . , n,

o

ξ′i =
ξ′j − µ′
√

σ2
, j = 1, . . . , m,

тогда все эти с.в. независимы и каждая из них имеет стандартное
нормальное распределение N(0, 1).

Далее воспользуемся известными распределениями.

Теорема 11. Статистика

t(ξ, ξ′) =

√
nm

n+m

[
(ξ̄ − µ) − (ξ̄ ′ − µ′)

]
√

(n − 1)σ̂2
n + (m − 1)σ̂2

m

n + m − 2

(2.42)

имеет распределение Стьюдента Tn+m−2 с n + m − 2 степенями
свободы.
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Доказательство. Рассмотрим наши выборки как единый (n+m)-
мерный случайный вектор и положим

ξ⃗ = ⟨ξ1, . . . , ξn, ξ′1, . . . , ξ
′
m⟩, ξ⃗

a
= ⟨

o

ξ1, . . . ,
o

ξn,
o

ξ′1, . . . ,
o

ξ′m⟩.

Введём в евклидовом пространстве Rn+m два (n+m)-мерных век-
тора

e⃗1 =
〈

1√
n

, . . . ,
1√
n︸ ︷︷ ︸

n

, 0, . . . , 0︸ ︷︷ ︸
m

〉
, e⃗2 =

〈
0, . . . , 0︸ ︷︷ ︸

n

1√
m

, . . . ,
1√
m︸ ︷︷ ︸

m

,

〉
.

Очевидно, что ∥e⃗1∥2 = ∥e⃗2∥2 = 1 и (e⃗1, e⃗2) = 0. Представим раз-
ность (ξ̄ − µ) − (ξ̄ ′ − µ′) в виде

(ξ̄ − µ) − (ξ̄ ′ − µ′) = c1(ξ⃗
a
, e⃗1) + c2(ξ⃗

a
, e⃗2) (2.43)

и найдём коэффициенты c1 и c2. Для этого запишем равенства

ξ̄ − µ =
1
n

n∑
i=1

ξi − µ =
1
n

n∑
i=1

(ξi − µ),

ξ̄ ′ − µ′ =
1
m

m∑
j=1

ξi − µ′ =
1
m

n∑
i=1

(ξ′i − µ′),

следовательно,

(ξ̄ − µ) − (ξ̄ ′ − µ′) =
1
n

n∑
i=1

(ξi − µ) − 1
m

n∑
i=1

(ξ′i − µ′). (2.44)

с другой стороны,

(ξ⃗
a
, e⃗1) =

n∑
i=1

ξi − µ√
σ2

· 1√
n

, (ξ⃗
a
, e⃗2) =

m∑
j=1

ξ′j − µ′
√

σ2
· 1√

m
, (2.45)

откуда

c1(ξ⃗
a
, e⃗1)+c2(ξ⃗

a
, e⃗2) =

c1√
nσ2

n∑
i=1

(ξi−µ)+
c2√
mσ2

m∑
j=1

(ξ′i−µ′). (2.46)
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Приравнивая правые части выражений (2.44) и (2.46), получаем

c1 =

√
σ2

n
, c2 = −

√
σ2

m
. (2.47)

Векторы e⃗1 и e⃗2 ортонормированные, следовательно, случай-
ные векторы (ξ⃗

a
, e⃗1) и (ξ⃗

a
, e⃗2) независимы и имеют независимые

стандартно нормально распределённые координаты. Поэтому

c1(ξ⃗
a
, e⃗1) + c2(ξ⃗

a
, e⃗2) ∼ N(0, c2

1 + c2
2).

и
1√

c2
1 + c2

2

(
c1(ξ⃗

a
, e⃗1) + c2(ξ⃗

a
, e⃗2)

)
∼ N(0, 1).

Теперь подставим явные выражения (2.47) для постоянных c1, c2,
тогда

1√
c2
1 + c2

2

=
σ2

n
+

σ2

n
= σ2 n + m

nm
,

и из (2.43) мы получаем

1√
c2
1 + c2

2

(
c1(ξ⃗

a
, e⃗1) + c2(ξ⃗

a
, e⃗2)

)
=

=

√
1
σ2

√
nm

n + m

(
(ξ̄ − µ) − (ξ̄ ′ − µ′)

)
∼ N(0, 1). (2.48)

Мы видим, что с точностью до множителя 1/
√

σ2 эта с.в., распреде-
лённая стандартно нормально, совпадает с числителем с.в. (2.42).

Обратимся к знаменателю с.в. (2.42). Введём в евклидовом про-
странстве Rn+m ортогональный проектор Π2 на двумерное подпро-
странство, натянутое на векторы e⃗1, e⃗2. На любой x⃗ ∈ Rn+m он
действует как

Π2x⃗ = (x⃗, e⃗1)e⃗1 + (x⃗, e⃗2)e⃗2,

при этом

∥Π2x⃗ ∥2 = (x⃗, e⃗1)2 + (x⃗, e⃗2)2, ∥x⃗ − Π2x⃗ ∥2 = ∥x⃗∥2 − ∥Π2x⃗ ∥2.
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Подставим в эти равенства ξ⃗
a

вместо x⃗ и получим с учётом (2.45)

∥Π2ξ⃗
a
∥2 =

1
nσ2

( n∑
i=1

(ξi − µ)
)2

− 1
mσ2

( m∑
j=1

(ξi − µ)
)2

=

=
n

σ2
(ξ̄ − µ)2 +

m

σ2
(ξ̄ ′ − µ′)2.

Отсюда

∥ξ⃗
a
− Π2ξ⃗

a
∥2 = ∥ξ⃗

a
∥2 − ∥Π2ξ⃗

a
∥2 =

=
1
σ2

n∑
i=1

(ξi − µ)2 +
1
σ2

m∑
j=1

(ξ′i − µ′)2 − n

σ2
(ξ̄ − µ)2 +

m

σ2
(ξ̄ ′ − µ′)2 =

=
1
σ2

{ n∑
i=1

[(ξi − µ)2 − (ξ̄ − µ)2 ] +
m∑

j=1

[(ξ′i − µ′)2 − (ξ̄ ′ − µ′)2 ]
}

.

Простые алгебраические преобразования, аналогичные преобразо-
ваниям выборочных дисперсий, дают

n∑
i=1

[(ξi − µ)2 − (ξ̄ − µ)2 ] =
n∑

i=1

(ξi − ξ̄)2 = (n − 1)σ̂2
n

и точно так же

m∑
j=1

[(ξ′i − µ′)2 − (ξ̄ ′ − µ′)2 ] =
n∑

i=1

(ξ′i − ξ̄ ′)2 = (m − 1)σ̂2
m.

Таким образом, получаем

∥ξ⃗
a
− Π2ξ⃗

a
∥2 =

1
σ2

(
(n − 1)σ̂2

n + (m − 1)σ̂2
m

)
. (2.49)

Видно, что ∥ξ⃗ a −Π2ξ⃗
a ∥ с точностью до множителя 1/σ2 совпадает

со знаменателем с.в. (2.42).
Итак, имеем, что с.в. ∥ξ⃗ a − Π2ξ⃗

a ∥2 имеет распределение хи-
квадрат с n + m − 2 степенями свободы,

∥ξ⃗
a
− Π2ξ⃗

a
∥2 ∼ Xn+m−2,
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и не зависит от (ξ̄−µ)− (ξ̄ ′−µ′) = c1(ξ⃗
a
, e⃗1)+ c2(ξ⃗

a
, e⃗2), поскольку

оператор I −Π2 проецирует любой (n + m)-мерный вектор на под-
пространство, ортогональное векторам e⃗1, e⃗2. Тогда с учётом (2.48)
и (2.49) статистика (2.42) может быть представлена в виде

t(ξ, ξ′) =

√
σ2

(
(ξ̄ − µ) − (ξ̄ ′ − µ′)

)√
σ2

∥ξ⃗ a − Π2ξ⃗
a ∥2

n + m − 2

=
ν0√

χ2
n+m−2

n + m − 2

,

где с.в. ν0 ∼ N(0, 1) и с.в. χ2
n+m−2 ∼ Xn+m−2 независимы. По опре-

делению t(ξ, ξ′) имеет распределение Стьюдента с n + m− 2 степе-
нями свободы. Теорема доказана.

На основании этой теоремы и с учетом того, что мы сформули-
ровали двустороннюю гипотезу µ ̸= µ′, задаём следующий крите-
рий с ошибкой первого рода, равной α0:

φ(x, x′) =

{
1, если |t(x, x′)| > C0,

0, если |t(x, x′)| 6 C0,
x ∈ Rn, x′ ∈ Rm,∫

|y|>C0

pn+m−2(y) dy = α0,

где pn+m−2( · ) – плотность вероятности распределения Стьюдента
с n + m − 2 степенями свободы.

Если гипотеза односторонняя, µ < µ′ или µ > µ′, то кри-
тические множества имеют соответственно вид t(x, x′) > C0 или
t(x, x′) < C0, где постоянная C0 получается из уравнения на ошиб-
ку критерия с надлежащей заменой области интегрирования.

Критерий Стьюдента также применяют для проверки гипоте-
зы о сравнении средних для выборок, не имеющих нормального
распределения, как асимптотический в пределе больших объёмов
выборок.

2.3. Проверка независимости
Пусть дана двумерная выборка объёма n, т. е. набор числовых

пар (x1, y1), . . . , (xn, yn), которые являются независимыми реали-
зациями двумерной с.в. (ξ, η). Гипотеза, которую мы собираемся
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проверять, формулируется так: с.в. ξ и η независимы. Никаких до-
полнительных предположений о распределении этих с.в. мы не де-
лаем.

Критерий хи-квадрат проверки независимости. Идея та-
кого критерия очень близка к идее критерия согласия хи-квадрат
из раздела 2.1. Мы группируем данные отдельно по x и по y, под-
считываем количество реализаций, попавших в каждый интервал
группировки и сравниваем эмпирические частоты с теми, которые
должны быть, если верна гипотеза.

Пусть X – диапазон значений с.в. ξ, а Y – диапазон значений
с.в. η. Разобьём X и Y на соответственно r > 1 и s > 1 непересека-
ющихся интервалов, X =

∑r
i=1 ∆Xr, Y =

∑s
j=1 ∆Yj .

Составим следующую таблицу:

∆X1 ∆X2 . . . ∆Xr
∑r

i=1

∆Y1 ν11 ν12 . . . ν1r ν̃1

∆Y2 ν21 ν22 . . . ν2r ν̃2
...

...
...

. . .
...

...
∆Ys νs1 νs2 . . . νsr ν̃s∑s

j=1 ν1 ν2 . . . νr n

В этой таблице:
• νij есть количество реализаций (xk, yk), в которых xk ∈ ∆Xi

и yk ∈ ∆Yj , i = 1, . . . , r и j = 1, . . . , s; очевидно,
∑r

i=1

∑s
j=1 νij = n;

• νi есть количество реализаций (xk, yk), в которых xk ∈ ∆Xi, i =
1, . . . , r; очевидно,

∑s
j=1 νij = νi;

• ν̃j есть количество реализаций (xk, yk), в которых yk ∈ ∆Yj , j =
1, . . . , s; очевидно,

∑s
i=r νi = ν̃j .

Частота попадания в прямоугольник разбиения на плоскости
или в интервал на прямой при n → ∞ сходится к соответствующей
вероятности,

νij

n
→ P (ξ ∈ ∆Xi, η ∈ ∆Yj)

def= pij ,

νi

n
→ P (ξ ∈ ∆Xi)

def= pi,
ν̃j

n
→ P (η ∈ ∆Yj)

def= p̃j ,

и, если верна гипотеза о независимости,

P (ξ ∈ ∆Xi, η ∈ ∆Yj) = P (ξ ∈ ∆Xi)P (η ∈ ∆Yj) (2.50)
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для всех i = 1, . . . , r и j = 1, . . . , s.
Заменим нашу исходную задачу о проверке гипотезы о незави-

симости задачей проверки равенств (2.50). С математической точки
зрения это проверка гипотезы

H : pij = pip̃j для всех i = 1, . . . , r, j = 1, . . . , s (2.51)

по следующим данным:
• реализации (ν11, ν12, . . . , νrs) с.в., имеющей полиномиальное рас-
пределение с вероятностями (p11, p12, . . . , prs);
• реализации (ν1, . . . , νr) с.в., имеющей полиномиальное распреде-
ление с вероятностями (p1, . . . , pr);
• реализации (ν̃1, . . . , ν̃s) с.в., имеющей полиномиальное распреде-
ление с вероятностями (p̃1, . . . , p̃s).
Вероятности в полиномиальных распределениях произвольны, за
исключением условия их неотрицательности и условий нормировки

r∑
i=1

s∑
j=1

pij = 1,

r∑
i=1

pi = 1,

s∑
j=1

p̃j = 1. (2.52)

Аналогичные равенства справедливы и для реализаций (т. е. реа-
лизации не являются независимыми):

r∑
i=1

s∑
j=1

νij = n,

r∑
i=1

νi = n,

s∑
j=1

ν̃j = n.

При проверке гипотезы (2.51) будем принимать решение в за-
висимости от близости произведений частот (νi/n) · (ν̃j/n) к ча-
стоте νij/n или, что то же самое, от близости νiν̃j/n к νij . Введем
следующее «расстояние» между наборами {νiν̃j/n} и {νij}:

χ2 = n

r∑
k=1

(νiν̃j/n − νij)2

νiν̃j
. (2.53)

(сравните с формулой (2.21)).
Справедлива следующая теорема.

Теорема 12. Если гипотеза (2.51) верна, то при n → ∞ распреде-
ление статистики (2.53) стремится к распределению хи-квадрат
с (r − 1)(s − 1) степенями свободы.
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Заметим, что если гипотеза верна, то вероятности (p1, . . . , pr)
и (p̃1, . . . , p̃s) полностью определяют вероятности (p11, p12, . . . , prs),
а первое равенство в (2.52) является следствием двух других. При
этом второе и третье равенства в (2.52) приводят к двум линей-
ным условиям на вероятности, в них участвующие, и тем самым
«съедают» одну степень свободы для каждого из наборов одномер-
ных вероятностей. Поэтому с.в. в предельном распределении имеет
(r − 1)(s − 1) степеней свободы.

Статистический критерий строится стандартным образом:

φ(χ2) =

{
1, если χ2 > C0,

0, если χ2 6 C0,

где C0 находится из уравнения∫
y>C0

pχ2
(r−1)(s−1)

(y) dy = α0.

Статистика χ2 определяется формулами (2.53), а pχ2
(r−1)(s−1)

( · ) –
плотность вероятности для распределения хи-квадрат с (r−1)(s−1)
степенями свободы.

Анализ корреляций. Напомним, что если с.в. ξ и η независи-
мы, то cor(ξ, η) = 0. Здесь коэффициент корреляции

cor(ξ, η) =
M(ξ − Mξ)(η − Mη)√

Dξ Dη
=

Mξη − MξMη√
Dξ Dη

. (2.54)

Обратное следствие, вообще говоря неверно, равенство нулю коэф-
фициента корреляции (некоррелированность с.в.) не обязательно
влечёт независимость. Тем не менее довольно часто решение задачи
проверки гипотезы о независимости выборок строят на основании
выборочного коэффициента корреляции. Понятно, что достаточно
далёкое от нуля значение этого коэффициента является серьёзным
основанием для отклонения гипотезы.

Коэффициент (2.54) удовлетворяет условию −1 6 cor(ξ, η) 6 1,
причём равенство | cor(ξ, η)| = 1 возможно тогда и только тогда,
когда одна из с.в. ξ и η с вероятностью единица есть линейная
функция от другой. Поэтому часто говорят, что коэффициент кор-
реляции измеряет величину линейной связи между с.в.
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Выборочный коэффциент корреляции получается из (2.54) за-
меной математических ожиданий на выборочные средние. Пусть,
как и выше, (x1, y1), . . . , (xn, yn) – двумерная выборка объёма n.
Выборочный коэффициент корреляции задаётся как

r(x, y) =
1
n

∑n
k=1(xk − x̄)(yk − ȳ)√

S2
x S2

y

=
1
n

∑n
k=1 xkyk − x̄ȳ√

S2
x S2

y

, (2.55)

где

x̄ =
1
n

n∑
k=1

xk, S2
x =

1
n

n∑
k=1

(xk − x̄)2 =
1
n

n∑
k=1

x2
k − x̄2

суть выборочные среднее и дисперсия для x = (x1, . . . , xn) и ана-
логично для y = (y1, . . . , yn)

ȳ =
1
n

n∑
k=1

yk, S2
y =

1
n

n∑
k=1

(yk − ȳ)2 =
1
n

n∑
k=1

y2
k − ȳ2

Заметим, что для выборочного коэффициента корреляции (2.55),
как и для коэффициента корреляции (2.54), имеются два пред-
ставления, и тот факт, что они дают один тот же результат, легко
проверяется прямым вычислением. Кроме того, подставив S2

x и S2
y

и умножив числитель и знаменатель в (2.55) на n, получим ещё од-
ну формулу для расчёта выборочного коэффициента корреляции:

r(x, y) =
∑n

k=1 xkyk − nx̄ȳ√(∑n
k=1 x2

k − nx̄2
)(∑n

k=1 y2
k − nȳ2

) . (2.56)

Пусть x1, . . . , xn – реализации н.с.в. ξ1, . . . , ξn, а y1, . . . , yn – реа-
лизации н.с.в. η1, . . . , ηn, имеющих следующие нормальные распре-
деления:

ξk ∼ N(µ, σ2), ηk ∼ N(µ̃, σ̃2), k = 1, . . . , n. (2.57)

Заметим, что тривиальные алгебраические преобразования дают

ξk − ξ̄√∑n
k=1(ξk − ξ̄ )2

=
ξk−µ√

σ2
− ξ−µ√

σ2√∑n
k=1

( ξk−µ√
σ2

− ξ−µ√
σ2

)2
,
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где

ξ − µ =
1
n

n∑
k=1

(ξk − µ) = ξ̄ − µ,

и аналогично для η1, . . . ηn. Поэтому распределение статистики вы-
борочного коэффициента корреляции не зависит от параметров
нормальных распределений:

r(ξ, η) =
1
n

∑n
k=1(ξk − ξ̄)(ηk − η̄)√

1
n

∑n
k=1(ξk − ξ̄)2 1

n

∑n
k=1(ηk − η̄)2

=

=
1
n

∑n
k=1(

o

ξk −
o

ξ̄ )(o
ηk −

o

η̄)√
1
n

∑n
k=1(

o

ξk −
o

ξ̄ )2 1
n

∑n
k=1(

o
ηk −

o

η̄)2
, (2.58)

где для каждого k = 1, . . . , n

o

ξk =
ξk − µ√

σ2
∼ N(0, 1), o

ηk =
ηk − µ̃√

σ̃2
∼ N(0, 1). (2.59)

С другой стороны, известно, что нормально распределённые
с.в. ξ1, . . . , ξn, η1, . . . , ηn независимы в совокупности тогда и толь-
ко тогда, когда все коэффициенты корреляции равны нулю, т. е.
cor(ξk, ηj)= 0 для любых k, j =1, . . . , n и cor(ξk, ξj)= cor(ηk, ηj)= 0
для любых k ̸= j. Таким образом, в случае нормального распре-
деления выборки гипотеза о независимости сводится к гипотезе
о некоррелированности данных. Большие значения выборочного
коэффициента корреляции r = r(ξ, η) очевидно свидетельствуют
против гипотезы, поэтому критерий c ошибкой α0 можно было бы
задать как

φ(r) =

{
1, если |r| > C0,

0, если |r| 6 C0,
,

∫ ∞

|u|>C0

pr(u) dt = α0.

Здесь pr( · ) –плотность вероятности выборочного коэффициента
корреляции r(ξ, η), где с.в. ξ1, . . . , ξn, η1, . . . , ηn независимы в сово-
купности и распределены нормально в соответствии с (2.57). Заме-
тим, что в силу соотношений (2.58), (2.59) можно заменить ξk и ηk

на
o

ξk и o
ηk и считать, что все с.в. распределены стандартно нор-

мально. Однако даже с такой заменой применение этого критерия
затруднительно из-за сложного вида функции pr( · ).
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Тем не менее существует удобный критерий для проверки неза-
висимости нормальных выборок с помощью выборочного коэффи-
циента корреляции. Справедлива следующая теорема.

Теорема 13. Пусть с.в. ξ1, . . . , ξn, η1, . . . , ηn независимы в сово-
купности и имеют нормальные распределения вида (2.57). Пусть
r(ξ, η) – выборочный коэффициент корреляции (2.58). Тогда ста-
тистика

τ(ξ, η) =
r(ξ, η)√

1
n−2(1 − r2(ξ, η))

имеет распределение Стьюдента Tn−2 с n−2 степенями свободы.

Соответственно, критерий задаётся как

φ(τ) =

{
1, если |τ | > C0,

0, если |τ | 6 C0,
,

∫ ∞

|t|>C0

pn−2(t) dt = α0.

Рассмотрим подробнее статистику τ(ξ, η) из теоремы 13. Будем
понимать выборки как случайные векторы со значениями в n-мер-
ном пространстве: ξ = ⟨ξ1, . . . , ξn⟩, η = ⟨η1, . . . , ηn⟩. Если в (2.58)
сократить множитель 1/n, то выборочный коэффициент корреля-
ции можно переписать как

r(ξ, η) =
(ξ − ξ̄, η − η̄)

∥ξ − ξ̄ ∥ · ∥η − η̄∥
=

(
o

ξ −
o

ξ̄,
o
η −

o

η̄ )

∥
o

ξ −
o

ξ̄ ∥ · ∥o
η −

o

η̄∥
. (2.60)

Более того, вводя ортогональный проектор Π1, действующий по
правилу Π1ξ = (ξ, e1)e1, где e1 = ⟨1/

√
n, . . . , 1/

√
n ⟩, приведем ра-

венство (2.60) к виду

r(ξ, η) =

(
(I − Π1)

o

ξ, (I − Π1)
o
η

)
∥(I − Π1)

o

ξ ∥ · ∥(I − Π1)
o
η∥

.

Другими словами, коэффициент корреляции r(ξ, η) есть косинус
угла между векторами (I − Π1)

o

ξ и (I − Π1)
o
η,

r(ξ, η) = cos φ(ξ, η), 0 6 φ(ξ, η) 6 π,
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что согласуется с условием |r(ξ, η)| 6 1 с вероятностью единица.
Тогда

√
1 − r2(ξ, η) = sin φ(ξ, η), и статистика в теореме 13 прини-

мает весьма элегантный вид:

τ(ξ, η) =
√

n − 2 ctg φ(ξ, η), 0 < φ(ξ, η) < π.

Здесь мы исключили из рассмотрения случай, когда с вероятно-
стью единица (I − Π1)

o

ξ = const · (I − Π1)
o
η (или, эквивалентно,

|r(ξ, η)| = 1), приводящий к sin φ(ξ, η) = 0 и бесконечным значени-
ям статистики τ(ξ, η). В остальных случаях τ(ξ, η) конечна с веро-
ятностью единица.

Существуют и другие методы проверки независимости, напри-
мер точный тест Фишера, который позволяет принимать решение в
случае малых выборок, но вычислительно достаточно сложен. Так-
же существуют различные статистики, помимо выборочного ко-
эффициента корреляции, позволяющие сделать вывод о наличии
или отсутствии связи между двумя выборками. В этом пособии
мы ограничимся двумя представленными выше критериями, осно-
ванными на теоремах 12 и 13.

2.4. P-value или надёжность гипотезы

Величина, которая называется p-value (p-значение, p-уровень
значимости, p-критерий), в последнее время стала очень широко
применяться в статистических исследованиях. Однако определе-
ния этой величины весьма туманны и зачастую просто искажают
её природу. В некоторых монографиях и учебниках это понятие
также вводится и называется по-разному: «критический уровень»
(Э. Леман), «фактически достигаемый уровень семейства критери-
ев» (А. А. Боровков), «реально достигнутый уровень значимости
критерия» (Н. И. Чернова). В этом разделе мы попытаемся объяс-
нить, что такое p-value, и исследовать её свойства.

Начнём с очень простого примера. Хорошо известно, что для
проверки простой гипотезы H : ξ ∼ N(0, 1) против сложной аль-
тернативы K : ξ ∼ N(µ, 1), µ > 0 (мы рассматриваем одномерную
выборку ξ), существует РНМК, критическое множество которого
имеет вид Dα = {z > Cα}, где Cα связана с ошибкой α первого
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рода (вероятностью ошибочно отклонить гипотезу) равенством

α = P0(ξ ∈ Dα) = P0(ξ > Cα) =
∫ ∞

Cα

1√
2π

e−z2/2 dz. (2.61)

Задавая приемлемый размер ошибки α = α0 и находя из уравне-
ния (2.61) значение Cα0 , мы получаем РНМК, который отклоняет
гипотезу всякий раз, когда реализация ξ = x больше Cα0 .

Если x 6 Cα0 , то мы гипотезу принимаем. Однако, очевидно,
имеется некоторая разница между реализацией x ≪ Cα0 и реали-
зацией x ≈ Cα0 , x 6 Cα0 . По всей видимости, в первом случае мы
будем принимать гипотезу с большей уверенностью, чем во втором,
потому что значение x ≪ Cα0 находится «глубоко внутри» множе-
ства принятия гипотезы, а значение x ≈ Cα0 близко к границе мно-
жества принятия гипотезы и критического множества. Достаточно
немного увеличить величину α0, и согласно нашему критерию ре-
ализация ξ = x уже будет противоречить гипотезе.

Возникает идея для выборки x количественно охарактеризовать
эту степень уверенности в принятии гипотезы величиной∫ ∞

x

1√
2π

e−z2/2 dz.

В самом деле, для x ≪ Cα0 эта величина достаточно большая
(и тем больше, чем дальше x от Cα0), а для x ≈ Cα0 мы имеем
α(x) ≈ α0, т. е. величина α(x) мала (больше, но почти равна ошиб-
ке критерия, которую, конечно, выбирают малой).

Теперь будем считать реализацию x фиксированной и рассмот-
рим семейство критических множеств Dα = {z > Cα}, α ∈ (0, 1),
нашего РНМК. Поставим задачу найти минимальное значение α
при условии, что наша реализация x ∈ Dα, т. е. будем искать

α(x) = inf
Dα: x∈Dα

α. (2.62)

Нетрудно заметить, что

α(x) = sup
Cα: Cα<x

∫ ∞

Cα

1√
2π

e−z2/2 dz. (2.63)

Действительно, интеграл

α =
∫ ∞

Cα

1√
2π

e−z2/2 dz
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тем меньше, чем больше Cα. При этом мы требуем, чтобы реа-
лизация x лежала в множестве Dα, т. е. x > Cα. Таким образом,
чтобы найти точную нижнюю грань в (2.63), нужно найти точ-
ную верхнюю грань значений Cα, которые удовлетворяют неравен-
ству Cα < x; очевидно, что эта точная верхняя грань равна x и

α(x) = sup
Cα : Cα<x

∫ ∞

Cα

1√
2π

e−z2/2 dz =
∫ ∞

x

1√
2π

e−z2/2 dz. (2.64)

Величина α(x), заданная уравнением (2.62), и равна р-value для
данного критерия и данной реализации x. Часто говорят, что она
равна минимальной вероятности ошибочно отклонить гипотезу по
наблюдению ξ = x.

Можно также провести рассуждения «в обратном направле-
нии», начав с величины р-value. Предположим, что по реализации x
мы нашли α(x) по формуле (2.63). Теперь поставим вопрос: како-
ва ошибка критерия, который обязательно отклоняет гипотезу по
реализации x? Имеем x ∈ Dα, следовательно, x > Cα, и тогда

α =
∫ ∞

Cα

1√
2π

e−z2/2 dz >
∫ ∞

x

1√
2π

e−z2/2 dz = α(x).

Таким образом, если α(x) велика, то ошибаться, отклоняя гипотезу
по реализации x, мы будем с вероятностью α > α(x), т. е. с очень
большой вероятностью. Если, наоборот, α(x) мала, то, отклоняя
гипотезу по реализации x, мы ошибаемся не с такой большой ве-
роятностью.

Однако все эти рассуждения верны для фиксированной реали-
зации x и тем самым для фиксированной величины α(x). Поэтому
рассуждения о какой-либо вероятности ошибочного решения теря-
ют смысл. В самом деле, для понимания, чему равна вероятность,
нам нужно много раз применить свой критерий (и тогда доля слу-
чаев ошибочных решений будет примерно равна вероятности), но
всякий раз мы будем иметь разные реализации x и, следователь-
но, разные значения α(x). Другими словами, р-value – это случай-
ная величина, заданная как функция α(ξ) от случайной выборки,
и любая аккуратная интерпретация р-value требует исследования
eё распределения.

Р-value как случайная величина систематически и достаточно
полно была исследована в работах Ю. П. Пытьева и его учеников.
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Он назвал эту случайную величину надёжностью статистиче-
ской гипотезы (точнее, но длиннее было бы назвать эту величину
надёжностью решения о принятии статистической гипотезы).

Вернёмся к рассмотренному примеру и рассмотрим с.в α(ξ),
которая рассчитывается по формуле (2.64) для α(x), когда ξ = x.
Найдём распределение надёжности в случаях, когда верна гипотеза
и когда верна альтернатива. Для нашего примера

α(ξ) =
∫ ∞

ξ

1√
2π

e−z2/2 dz.

Сначала заметим, что для любого распределения с.в. ξ и для лю-
бого b ∈ (0, 1) в силу строго монотонной зависимости интеграла от
нижнего предела

P (α(ξ) < b) = P (ξ > xb), где α(xb) = b. (2.65)

Перепишем последнее уравнение как

b =
∫ ∞

xb

1√
2π

e−z2/2 dz = P0(ξ > xb). (2.66)

Пусть верна гипотеза. Сравнивая уравнение (2.66) с первым равен-
ством в (2.65), видим, что P0(α(ξ) < b) = b для любого b ∈ (0, 1).
Таким образом, если верна гипотеза, то функция распределения
и плотность вероятности надёжности задаются как

Fα(b) = b, pα(b) = F ′
α(b) = 1, 0 < b < 1.

Мы получили следующий результат: при верной простой гипотезе
надёжность распределена равномерно, α(ξ) ∼ U(0, 1).

Пусть теперь верна альтернатива, ξ ∼ N(µ, 1), µ > 0. Из (2.65)
получаем

Fα(b) = P (α(ξ) < b) = P (ξ > xb) =
∫ ∞

xb

1√
2π

e−(z−µ)2/2 dz,

pα(b) =
dFα(b)

db
= − 1√

2π
e−(xb−µ)2/2 · dxb

db
.

При этом уравнение (2.66) для xb остаётся прежним, дифференци-
руя его по b, имеем

1 =
d

db

∫ ∞

xb

1√
2π

e−z2/2 dz = − 1√
2π

e−x2
b/2 · dxb

db
.
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Отсюда
dxb

db
=

(
− 1√

2π
e−x2

b/2

)−1

,

что после подстановки в формулу для pα(b) даёт

pα(b) =
e−(xb−µ)2/2

e−x2
b/2

= e2xbµ · e−µ2/2.

Из (2.66) следует, что если b → 1, то xb → −∞, если b → 0, то
xb → +∞. Отсюда получаем предельное поведение плотности ве-
роятности надёжности при верной альтернативе µ > 0:

lim
b→1

pα(b) = lim
xb→−∞

e2xbµ · e−µ2/2 = 0,

lim
b→0

pα(b) = lim
xb→+∞

e2xbµ · e−µ2/2 = +∞.

Таким образом, при верной альтернативе надёжность с большой
вероятностью близка к 0 и с малой вероятностью близка к 1.

Полученные результаты показывают, что для рассмотренного
примера интуитивные представления о p-value в целом верны. Если
α(ξ) велика, то это свидетельствует в пользу верной гипотезы, но
не потому, что при верной гипотезе распределение надёжности со-
средоточено в области значений, близких к 1, а потому что при вер-
ной альтернативе такие значения маловероятны. Напротив, низкие
значения надёжности свидетельствуют в пользу альтернативы, но
опять же потому, что при верной альтернативе вероятность наблю-
дать низкие значения α(ξ) достаточно высока по сравнению с той
же вероятностью при верной гипотезе.

Однако всё это верно лишь в рассмотренном случае. Для дру-
гих задач и других критериев требуется отдельное исследование
распределения надёжности.

Тем не менее можно доказать некоторое общее утверждение.
Рассмотрим простую гипотезу H : ξ ∼ L0( · ) и предположим, что
задано семейство нерандомизированных критериев для её провер-
ки, параметризованное величиной ошибки α ∈ (0, 1). Обозначим
критические множества для таких критериев как Dα, α ∈ (0, 1):

P0(ξ ∈ Dα) =
∫

Dα

L0(x) dx = α для каждого α ∈ (0, 1). (2.67)
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.
Наложим на семейство критических множеств {Dα} следующие

естественные условия:
1) для любого α ∈ (0, 1) существует множество Dα;
2) семейство монотонно по α: если α1 6 α2, то Dα1 ⊂ Dα2 .

Зададим надёжность гипотезы как

α(ξ) = inf
α : ξ∈Dα

α = inf
Dα : ξ∈Dα

P0(ξ ∈ Dα). (2.68)

Теорема 14. Если при верной гипотезе функция распределения
надёжности Fα(b) = P0(α(ξ) < b), 0 6 b 6 1, непрерывна всюду на
интервале (0, 1), то α(ξ) ∼ U(0, 1).

Доказательство . Рассмотрим множество {ξ : α(ξ) < b} при фик-
сированном b ∈ (0, 1). Если α(ξ) < b, то по определению точной
нижней грани среди α, по которым вычисляется точная нижняя
грань (2.68) (тех, для которых ξ ∈ Dα), найдётся значение α = a,
такое что α(ξ) = a < b. Тогда ξ ∈ Da ⊂ Db, следовательно, ξ ∈ Db.

Теперь, наоборот, пусть {ξ ∈ Db}, тогда значение b ∈ (0, 1) по-
падает в множество {α ∈ (0, 1) : ξ ∈ Dα}, следовательно,

α(ξ) = inf
α : ξ∈Dα

α 6 b.

Таким образом, мы имеем цепочку следствий

α(ξ) < b =⇒ ξ ∈ Db =⇒ α(ξ) 6 b,

и в терминах вероятностей для любого распределения с.в. ξ

P (α(ξ) < b) 6 P (Db) 6 P (α(ξ) 6 b}.

Отсюда при верной гипотезе в силу P0(Db) = b

Fα(b) = P0(α(ξ) < b) 6 b 6 P0(α(ξ) 6 b) = Fα(b + 0) = Fα(b),

где самое правое равенство есть следствие непрерывности функции
распределения надёжности. Как результат, имеем Fα(b) = b для
всех b ∈ (0, 1). Теорема доказана.
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